Abstract Coral diseases contribute to the rapid decline in coral reefs worldwide, and yet coral bacterial pathogens have proved difficult to identify because 16S rRNA gene surveys typically identify tens to hundreds of disease‐associate bacteria as putative pathogens. An example is white band disease (WBD), which has killed up to 95% of the now‐endangered CaribbeanAcroporacorals since 1979, yet the pathogen is still unknown. The 16S rRNA gene surveys have identified hundreds of WBD‐associated bacterial amplicon sequencing variants (ASVs) from at least nine bacterial families with little consensus across studies. We conducted a multi‐year, multi‐site 16S rRNA gene sequencing comparison of 269 healthy and 143 WBD‐infectedAcropora cervicornisand used machine learning modelling to accurately predict disease outcomes and identify the top ASVs contributing to disease. Our ensemble ML models accurately predicted disease with greater than 97% accuracy and identified 19 disease‐associated ASVs and five healthy‐associated ASVs that were consistently differentially abundant across sampling periods. Using a tank‐based transmission experiment, we tested whether the 19 disease‐associated ASVs met the assumption of a pathogen and identified two pathogenic candidate ASVs—ASV25Cysteiniphilum litoraleand ASV8Vibriosp. to target for future isolation, cultivation, and confirmation of Henle‐Koch's postulate via transmission assays. 
                        more » 
                        « less   
                    This content will become publicly available on February 20, 2026
                            
                            Antibiotic pretreatment inhibits white band disease infection by suppressing the bacterial pathobiome
                        
                    
    
            Diseases have caused unprecedent mortality in Caribbean coral communities. White band disease (WBD) has killed up to 95% of all endangered Caribbean Acroporids since it was first observed in 1979. Despite the devastating impacts of WBD, its etiology is currently unknown although recent research identified two bacterial strains – ASVs classified as aCysteiniphilum litoraleand aVibriosp., as the most likely pathogens. To better understand the disease etiology of WBD, we pretreated corals with antibiotics to determine how prophylactic use of antibiotics impacts the transmission of WBD in a replicated tank-based experiment. We found the prophylactic use of antibiotics led to significantly reduced infection rates in disease exposed corals with a 30-percentage point decrease in the infection rate. Analyses of 16S rRNA amplicon gene sequencing data in the disease exposed corals demonstrated that antibiotic pretreatment resulted in coral microbiomes which were less speciose and contained relatively fewerVibriospp. than untreated corals, indicating that the benefit of the antibiotic pretreatment was its ability to reduce the relative abundance of intrinsic secondary opportunists and/or opportunistic pathogens suggesting their likely importance to the etiology of WBD. We propose two distinct etiologies involving either an extrinsic keystone pathogen (Cysteiniphilum litorale) or overgrowth of intrinsic opportunistic pathogens (Vibriospp.). Future research should isolate these strains to confirm the etiology of white band disease. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1924145
- PAR ID:
- 10623673
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 12
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT Coral reefs are increasingly threatened by disease outbreaks, yet little is known about the genetic mechanisms underlying disease resistance. Since the 1970s, White Band Disease (WBD) has decimated the Caribbean staghorn coralAcropora cervicornis. However, 15% or more of individuals are highly disease‐resistant, and the genes controlling the production of Argonaut proteins, involved in microRNA (miRNA) post‐transcriptional gene silencing, are up‐regulated in WBD‐resistant corals. This suggests that miRNAs may be key regulators of coral immunity. In this study, we conducted an in situ disease transmission experiment with five healthy‐exposed control tanks and five WBD‐exposed tanks, each containing 50A. cervicornisgenotypes, sampled over 7 days and then sequenced miRNAs from 12 replicate genotypes, including 12 WBD‐exposed and 12 healthy‐exposed control fragments from two time points. We identified 67bona fidemiRNAs inA. cervicornis, 3 of which are differentially expressed in disease‐resistant corals. We performed a phylogenetic comparison of miRNAs across cnidarians and found greater conservation of miRNAs in more closely related taxa, including all three differentially expressed miRNAs being conserved in more than oneAcroporacoral. One of the three miRNAs has putative genomic targets involved in the cnidarian innate immunity. In addition, community detection coupled with over‐representation analysis of our miRNA–messenger RNA (mRNA) target network found two key uniqueA. cervicornismiRNAs regulating multiple important immune‐related pathways such as Toll‐like receptor pathway, endocytosis, and apoptosis. These findings highlight how multiple miRNAs may help the coral host maintain immune homeostasis in the presence of environmental stress including disease.more » « less
- 
            White band disease (WBD) has caused unprecedented declines in the CaribbeanAcroporacorals, which are now listed as critically endangered species. Highly disease-resistantAcropora cervicornisgenotypes exist, but the genetic underpinnings of disease resistance are not understood. Using transmission experiments, a newly assembled genome, and whole-genome resequencing of 76A. cervicornisgenotypes from Florida and Panama, we identified 10 genomic regions and 73 single-nucleotide polymorphisms that are associated with disease resistance and that include functional protein-coding changes in four genes involved in coral immunity and pathogen detection. Polygenic scores calculated from 10 genomic loci indicate that genetic screens can detect disease resistance in wild and nursery stocks ofA. cervicornisacross the Caribbean.more » « less
- 
            Summary Stony Coral Tissue Loss Disease (SCTLD) is a devastating disease. Since 2014, it has spread along the entire Florida Reef Tract and into the greater Caribbean. It was first detected in the United States Virgin Islands in January 2019. To more quickly identify microbial bioindicators of disease, we developed a rapid pipeline for microbiome sequencing. Over a span of 10 days we collected, processed and sequenced coral and near‐coral seawater microbiomes from diseased and apparently healthyColpophyllia natans,Montastraea cavernosa,Meandrina meandritesandOrbicella franksi. Analysis of bacterial and archaeal 16S ribosomal RNA gene sequences revealed 25 bioindicator amplicon sequence variants (ASVs) enriched in diseased corals. These bioindicator ASVs were additionally recovered in near‐coral seawater (<5 cm of coral surface), a potential reservoir for pathogens. Phylogenetic analysis of microbial bioindicators with sequences from the Coral Microbiome Database revealed thatVibrio,Arcobacter, Rhizobiaceae and Rhodobacteraceae sequences were related to disease‐associated coral bacteria and lineages novel to corals. Additionally, four ASVs (Algicola,Cohaesibacter,ThalassobiusandVibrio) were matches to microbes previously associated with SCTLD that should be targets for future research. Overall, this work suggests that a rapid sequencing framework paired with specialized databases facilitates identification of microbial disease bioindicators.more » « less
- 
            Dubilier, Nicole (Ed.)ABSTRACT The increase in prevalence and severity of coral disease outbreaks produced by Vibrio pathogens, and related to global warming, has seriously impacted reef-building corals throughout the oceans. The coral Oculina patagonica has been used as a model system to study coral bleaching produced by Vibrio infection. Previous data demonstrated that when two coral pathogens ( Vibrio coralliilyticus and Vibrio mediterranei ) simultaneously infected the coral O. patagonica , their pathogenicity was greater than when each bacterium was infected separately. Here, to understand the mechanisms underlying this synergistic effect, transcriptomic analyses of monocultures and cocultures as well as experimental infection experiments were performed. Our results revealed that the interaction between the two vibrios under culture conditions overexpressed virulence factor genes (e.g., those encoding siderophores, the type VI secretion system, and toxins, among others). Moreover, under these conditions, vibrios were also more likely to form biofilms or become motile through induction of lateral flagella. All these changes that occur as a physiological response to the presence of a competing species could favor the colonization of the host when they are present in a mixed population. Additionally, during coral experimental infections, we showed that exposure of corals to molecules released during V. coralliilyticus and V. mediterranei coculture induced changes in the coral microbiome that favored damage to coral tissue and increased the production of lyso-platelet activating factor. Therefore, we propose that competition sensing, defined as the physiological response to detection of harm or to the presence of a competing Vibrio species, enhances the ability of Vibrio coral pathogens to invade their host and cause tissue necrosis. IMPORTANCE Vibrio coralliilyticus and Vibrio mediterranei are important coral pathogens capable of inducing serious coral damage, which increases severely when they infect the host simultaneously. This has consequences related to the dispersion of these pathogens among different locations that could enhance deleterious effects on coral reefs. However, the mechanisms underlying this synergistic interaction are unknown. The work described here provides a new perspective on the complex interactions among these two Vibrio coral pathogens, suggesting that coral infection could be a collateral effect of interspecific competition. Major implications of this work are that (i) Vibrio virulence mechanisms are activated in the absence of the host as a response to interspecific competition and (ii) release of molecules by Vibrio coral pathogens produces changes in the coral microbiome that favor the pathogenic potential of the entire Vibrio community. Thus, our results highlight that social cues and competition sensing are crucial determinants of development of coral diseases.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
