skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 20, 2026

Title: An Integrated Computational and Experimental Study of Vortex Chamber Performance for Reducing Entrapped Slag and Reoxidation Defects in Steel Castings
Slag defects remain a persisting and prominent problem for steel foundries across the world. Slag defects are surface defects usually caused by oxides transported from the pouring ladle or formed during the initial stages of filling that are transported into the casting cavity during pouring. This study investigates the use of vortex chambers as a component of the gating system and a potential slag trapping mechanism for ferrous metals through computational modeling and experimental validations. Six vortex chamber designs were studied using 3D sand-printing (3DSP) with varying chamber thickness and inlet-outlet height difference. For experimental validation, ASTM A216 WCB steel plates were cast using these vortex chamber designs. The results were compared to a benchmark design consisting of a conventional straight runner section in place of the vortex chamber. Computational results include ingate velocity during filling, entrained air volume fraction, and free surface defect mass. Experimental results include a subsurface pore volume fraction model based on the measured ultrasonic wave speed and attenuation. The experimental results were correlated with the computational results and show strong agreement. The computational results suggest a 31% reduction in melt velocity at the ingate from one of the vortex chamber designs and confirming the reduction in turbulence and reoxidation in the melt stream. However, the experimental results suggest no significant improvement in terms of subsurface porosity for the vortex chamber designs based on previous literature.  more » « less
Award ID(s):
1944120
PAR ID:
10623684
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
International Journal of Metalcasting
ISSN:
1939-5981
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The 3D sand printing (3DSP) process is a binder jetting class of additive manufacturing process that can incorporate complex 3D mold designs and consolidate cores with intricate features that were previously inaccessible. Prior studies in 3DSP mold design have been shown to improve pouring and filling conditions for sand casting. However, the opportunity to improve casting quality by exploring 3D riser designs during the solidification stage has not yet been explored. In this research, three novel 3D riser geometries—ellipsoid, spherical, and a fusion riser (combination of cylindrical and ellipsoid riser) were investigated. The results were compared to the benchmark cylindrical risers to assess casting performance (e.g., reduction in shrinkage porosity, increase in solidification time). Computational solidification simulations have been presented to evaluate the characteristics of the novel risers for three different metal alloys- nickel aluminum bronze (NAB), low-carbon steel A216 (WCB), and aluminum alloy (A319) alloy. From the results of this research, spherical risers were found to provide 45% yield improvement of for the three alloys studied. In addition, the riser neck diameter using a spherical riser experienced up to 77% reduction when compared to the recommended dimensions from previous literature. Finally, one of the spherical riser designs provided 18% improvement in terms of riser-pipe safety height over the benchmark design. Findings from this research will help metalcasting industries to optimize their riser designs for complex casting geometries by implementing 3D riser geometries (via 3DSP) into traditional mold making for yield improvement and defect-free castings. 
    more » « less
  2. Validation of CFD tornado wind field with experimental or field measurements is limited to comparison of tangential velocity profile at certain elevations above the ground level and few studies are based on comparison of pressure profile. However, important tornado vortex features such as touchdown swirl ratio (ST), core radius (rc), maximum tangential velocity (Vtmax), elevation of maximum tangential velocity (zc) and pressure distribution over a range of varying swirl ratios which strongly influences tornado forces on a building have not been accounted for validation of tornado wind field. In this study, important tornado vortex features are identified and validated with experimental measurements; the important tornado features obtained from the CFD model are found to be in reasonable agreement with experimental measurements. Besides, tornado chambers with different geometrical features (such as different outlet size and location and total heights) are used in different works of literature; however, the effect of variation of those key geometrical features on tornado wind field is not very well understood yet. So, in this work, the size of outlet and total height are systematically varied to study the effect on important tornado vortex parameters. Results indicate that reducing outlet diameter in a tornado chamber increases ST, Vtmax and zc and decreases rc. Similarly, increasing total height of tornado chamber decreases ST, Vtmax and rc whereas zc remains nearly constant. Overall, it is found that variation of outlet diameter has a stronger effect on tornado wind field than the variation in total height of tornado chamber. 
    more » « less
  3. null (Ed.)
    A method to predict sub-filter shear-induced velocities on a liquid-gas phase interface for use in a dual scale LES model is presented. The method reconstructs the sub-filter velocity field in the vicinity of the interface by introducing a vortex sheet at the interface. The vortex sheet is transported by an unsplit geometric volume and surface area advection scheme with a Piecewise Linear Interface Construction (PLIC) representation of the material interface. At each step and desired location the shear-induced velocities can be calculated by integrating the vortex sheet and other relevant quantities over the liquid-gas interface with the sub-grid velocity reconstruction limited to a small number of cells near the phase interface. The vortex sheet method is tested and compared against prior literature. 
    more » « less
  4. null (Ed.)
    A method to predict sub-filter shear-induced velocities on a liquid-gas phase interface for use in a dual scale LES model is presented. The method reconstructs the sub-filter velocity field in the vicinity of the interface by introducing a vortex sheet at the interface. The vortex sheet is transported by an unsplit geometric volume and surface area advection scheme with a Piece- wise Linear Interface Construction (PLIC) representation of the material interface. At each step and desired location the shear-induced velocities can be calculated by integrating the vortex sheet and other relevant quantities over the liquid-gas surface with the sub-grid velocity recon- struction limited to a small number of cells near the phase interface. The vortex sheet method is tested and compared against prior literature. 
    more » « less
  5. A method to predict sub-filter shear-induced velocities on a liquid-gas phase interface for use in a dual scale LES model is presented and compared against prior work on Vortex Sheet methods. The method reconstructs the sub-filter velocity field in the vicinity of the interface by employing a vortex sheet at the interface location. The vortex sheet is transported by an unsplit geometric volume and surface area advection scheme with a Piecewise Linear Interface Construction (PLIC) representation of the material interface. At each step, the vorticity field is constructed by evaluating a volume integral of the vortex sheet and a numerical spreading parameter near the liquid-gas interface. A Poisson equation can then be constructed and solved for the vector potential; the self-induced velocities due to the vortex sheet are subsequently evaluated from the vector potential. The described vortex sheet method is tested and compared against prior literature. 
    more » « less