Estimating and quantifying uncertainty in system parameters remains a big challenge in applied and computational mathematics. A subset of these problems includes estimating periodic parameters that have unknown dynamics. Along with their time series, the period of these parameters may also be unknown and need to be estimated. The aim of this paper is to address the periodic parameter estimation problem, with particular focus on exploring the associated uncertainty, using Monte Carlo particle methods, such as the ensemble Kalman filter. Both parameter tracking and piecewise function approximations of periodic parameters are considered, highlighting aspects of parameter uncertainty in each approach when considering factors such as the frequency of available data and the number of piecewise segments used in the approximation. Estimation of the period of the periodic parameters and related uncertainty is also analyzed in the piecewise formulation. The pros and cons of each approach are discussed relative to a numerical example estimating the external voltage parameter in the FitzHugh-Nagumo system for modeling the spiking dynamics of neurons.
more »
« less
This content will become publicly available on July 24, 2026
Simultaneous Detection of Structural Breaks and Outliers in Time Series
This article considers the problem of modeling a class of nonstationary time series using piecewise autoregressive (AR) processes in the presence of outliers. The number and locations of the piecewise AR segments, as well as the orders of the respective AR processes, are assumed to be unknown. In addition, each piece may contain an unknown number of innovational and/or additive outliers. The minimum description length (MDL) principle is applied to compare various segmented AR fits to the data. The goal is to find the “best” combination of the number of segments, the lengths of the segments, the orders of the piecewise AR processes, and the number and type of outliers. Such a “best” combination is implicitly defined as the optimizer of an MDL criterion. Since the optimization is carried over a large number of configurations of segments and positions of outliers, a genetic algorithm is used to find optimal or near‐optimal solutions. Numerical results from simulation experiments and real data analyses show that the procedure enjoys excellent empirical properties.
more »
« less
- Award ID(s):
- 2210388
- PAR ID:
- 10623840
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Time Series Analysis
- ISSN:
- 0143-9782
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Extensive prior work has provided methods for the optimization of routing based on weights assigned to travel duration, and/or travel cost, and/or the distance traveled. Routing can be in various modalities, such as by car, on foot, by bicycle, via public transit, or by boat. A typical method of routing involves building a graph comprised of street segments, assigning a normalized weighted value to each segment, and then applying the weighted-shorted path algorithm to the graph in order to find the best route. Some users desire that the routing suggestion include consideration pertaining to the scenic-architectural quality of the path. For example, a user may seek a leisure walk via what they might deem as visually attractive architecture. Here, we are proposing a method to quantify such user preferences and scenic quality and to augment the standard routing methods by giving weight to the scenic quality. That is, instead of suggesting merely the time and cost-optimal route, we will find the best route that is tailored towards the user’s scenic quality preferences as an additional criterion to the time and cost. The proposed method uniquely weighs the scenic interest or residential street segments based on the property valuation data.more » « less
-
We demonstrate an inverse designed achromatic, flat, polarization-insensitive diffractive optic element, i.e., a multilevel diffractive lens (MDL), operating across a broadband range of UV light (250 nm – 400 nm) via numerical simulations. The simulated average on-axis focusing efficiency of the MDL is optimized to be as high as ∼86%. We also investigate the off-axis focusing characteristics at different incident angles of the incoming UV radiation such that the MDL has a full field of view of 30°. The simulated average off-axis focusing efficiency is ∼67%, which is the highest reported till date for any chromatic or achromatic UV metalens or diffractive lens to the best of our knowledge. The designed MDL is composed of silicon nitride. The work reported herein will be useful for the miniaturization and integration of lightweight and compact UV optical systems.more » « less
-
Abstract Compound flooding may result from the interaction of two or more contributing processes, which may not be extreme themselves, but in combination lead to extreme impacts. Here, we use statistical methods to assess compounding effects from storm surge and multiple riverine discharges in Sabine Lake, TX. We employ several trivariate statistical models, including vine‐copulas and a conditional extreme value model, to examine the sensitivity of results to the choice of data pre‐processing steps, statistical model setup, and outliers. We define a response function that represents water levels resulting from the interaction between discharge and surge processes inside Sabine Lake and explore how it is affected by including or ignoring dependencies between the contributing flooding drivers. Our results show that accounting for dependencies leads to water levels that are up to 30 cm higher for a 2% annual exceedance probability (AEP) event and up to 35 cm higher for a 1% AEP event, compared to assuming independence. We also find notable variations in the results across different sampling schemes, multivariate model configurations, and sensitivity to outlier removal. Under data constraints, this highlights the need for testing various statistical modelling approaches, while the choice of an optimal approach remains subjective.more » « less
-
We consider the problem of controlling a Linear Quadratic Regulator (LQR) system over a finite horizon T with fixed and known cost matrices Q,R, but unknown and non-stationary dynamics A_t, B_t. The sequence of dynamics matrices can be arbitrary, but with a total variation, V_T, assumed to be o(T) and unknown to the controller. Under the assumption that a sequence of stabilizing, but potentially sub-optimal controllers is available for all t, we present an algorithm that achieves the optimal dynamic regret of O(V_T^2/5 T^3/5 ). With piecewise constant dynamics, our algorithm achieves the optimal regret of O(sqrtST ) where S is the number of switches. The crux of our algorithm is an adaptive non-stationarity detection strategy, which builds on an approach recently developed for contextual Multi-armed Bandit problems. We also argue that non-adaptive forgetting (e.g., restarting or using sliding window learning with a static window size) may not be regret optimal for the LQR problem, even when the window size is optimally tuned with the knowledge of $$V_T$$. The main technical challenge in the analysis of our algorithm is to prove that the ordinary least squares (OLS) estimator has a small bias when the parameter to be estimated is non-stationary. Our analysis also highlights that the key motif driving the regret is that the LQR problem is in spirit a bandit problem with linear feedback and locally quadratic cost. This motif is more universal than the LQR problem itself, and therefore we believe our results should find wider application.more » « less
An official website of the United States government
