skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Random elastic space–time (REST) prediction
Statistical modeling and interpolation of space–time processes has gained increasing relevance over the last few years. However, real world data often exhibit characteristics that challenge conventional methods such as nonstationarity and temporal misalignment. For example, high frequency solar irradiance data are typically observed at fine temporal scales, but at sparse spatial sampling, so space–time interpolation is necessary to support solar energy studies. The nonstationarity and phase misalignment of such data challenges extant approaches. We propose random elastic space–time (REST) prediction, a novel method that addresses temporally-varying phase misalignment by combining elastic alignment and conventional kriging techniques. Moreover, uncertainty in both amplitude and phase alignment can be readily quantified in a conditional simulation framework, whereas conventional space–time methods only address am- plitude uncertainty. We illustrate our approach on a challenging solar irradiance dataset, where our method demonstrates superior predictive distributions compared to existing geostatistical and functional data analytic techniques.  more » « less
Award ID(s):
2310487
PAR ID:
10623893
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Spatial Statistics
Volume:
67
Issue:
C
ISSN:
2211-6753
Page Range / eLocation ID:
100904
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Variation in solar irradiance causes power generation fluctuations in solar power plants. Power grid operators need accurate irradiance forecasts to manage this variability. Many factors affect irradiance, including the time of year, weather and time of day. Cloud cover is one of the most important variables that affects solar power generation, but is also characterized by a high degree of variability and uncertainty. Deep learning methods have the ability to learn long-term dependencies within sequential data. We investigate the application of Gated Recurrent Units (GRU) to forecast solar irradiance and present the results of applying multivariate GRU to forecast hourly solar irradiance in Phoenix, Arizona. We compare and evaluate the performance of GRU against Long Short-Term Memory (LSTM) using strictly historical solar irradiance data as well as the addition of exogenous weather variables and cloud cover data. Based on our results, we found that the addition of exogenous weather variables and cloud cover data in both GRU and LSTM significantly improved forecasting accuracy, performing better than univariate and statistical models. 
    more » « less
  2. We propose a real-time path guiding method, Voxel Path Guiding (VXPG), that significantly improves fitting efficiency under limited sampling budget. Our key idea is to use a spatial irradiance voxel data structure across all shading points to guide the location of path vertices. For each frame, we first populate the voxel data structure with irradiance and geometry information. To sample from the data structure for a shading point, we need to select a voxel with high contribution to that point. To importance sample the voxels while taking visibility into consideration, we adapt techniques from offline many-lights rendering by clustering pairs of shading points and voxels. Finally, we unbiasedly sample within the selected voxel while taking the geometry inside into consideration. Our experiments show that VXPG achieves significantly lower perceptual error compared to other real-time path guiding and virtual point light methods under equal-time comparison. Furthermore, our method does not rely on temporal information, but can be used together with other temporal reuse sampling techniques such as ReSTIR to further improve sampling efficiency. 
    more » « less
  3. null (Ed.)
    With the recent discoveries and engineering solutions emerging in nanomaterials and nanostructures, independent band modulation of solar radiation on building envelopes, including glazing systems, has become increasingly viable as a potential means of improving building energy savings and indoor visual comfort. However, when it comes to the prediction of these new materials’ potential energy performance in buildings, most studies utilize a simple solar irradiance (e.g., global horizontal solar irradiance, direct beam solar irradiance) or a rough estimation of solar infrared (e.g., 50% solar irradiance) as input, which may cause significant errors. Consequently, there is a pressing need for reliable performance estimations of the solar infrared control and response at the building’s scale. To assess this, we need a solar spectral irradiance model, or at least a wideband (visible or infrared) solar irradiance model, as input. To develop this new type of model, one needs to understand the modeling-related key elements, including available solar spectral irradiance datasets, data collection methods, and modeling techniques. As such, this paper reviews the current major measurement methods and tools used in collecting solar spectral irradiance data with a focus on the solar infrared region, identifies the available related resources and datasets that particularly encompass the solar spectral irradiance data with a sufficient wavelength range, and studies existing solar irradiation modeling techniques for building simulations. These investigations will then form the background and backbone for a study scheme of solar infrared radiation modeling and indicate future research paths and opportunities. 
    more » « less
  4. Power grid operators rely on solar irradiance forecasts to manage uncertainty and variability associated with solar power. Meteorological factors such as cloud cover, wind direction, and wind speed affect irradiance and are associated with a high degree of variability and uncertainty. Statistical models fail to accurately capture the dependence between these factors and irradiance. In this paper, we introduce the idea of applying multivariate Gated Recurrent Units (GRU) to forecast Direct Normal Irradiance (DNI) hourly. The proposed GRU-based forecasting method is evaluated against traditional Long Short-Term Memory (LSTM) using historical irradiance data (i.e., weather variables that include cloud cover, wind direction, and wind speed) to forecast irradiance forecasting over intra-hour and inter-hour intervals. Our evaluation on one of the sites from Measurement and Instrumentation Data Center indicate that both GRU and LSTM improved DNI forecasting performance when evaluated under different conditions. Moreover, including wind direction and wind speed can have substantial improvement in the accuracy of DNI forecasts. Besides, the forecasting model can accurately forecast irradiance values over multiple forecasting horizons. 
    more » « less
  5. PurposeTo develop a non‐Cartesian k‐space reconstruction method using self‐calibrated region‐specific interpolation kernels for highly accelerated acquisitions. MethodsIn conventional non‐Cartesian GRAPPA with through‐time GRAPPA (TT‐GRAPPA), the use of region‐specific interpolation kernels has demonstrated improved reconstruction quality in dynamic imaging for highly accelerated acquisitions. However, TT‐GRAPPA requires the acquisition of a large number of separate calibration scans. To reduce the overall imaging time, we propose Self‐calibrated Interpolation of Non‐Cartesian data with GRAPPA (SING) to self‐calibrate region‐specific interpolation kernels from dynamic undersampled measurements. The SING method synthesizes calibration data to adapt to the distinct shape of each region‐specific interpolation kernel geometry, and uses a novel local k‐space regularization through an extension of TT‐GRAPPA. This calibration approach is used to reconstruct non‐Cartesian images at high acceleration rates while mitigating noise amplification. The reconstruction quality of SING is compared with conjugate‐gradient SENSE and TT‐GRAPPA in numerical phantoms and in vivo cine data sets. ResultsIn both numerical phantom and in vivo cine data sets, SING offers visually and quantitatively similar reconstruction quality to TT‐GRAPPA, and provides improved reconstruction quality over conjugate‐gradient SENSE. Furthermore, temporal fidelity in SING and TT‐GRAPPA is similar for the same acceleration rates. G‐factor evaluation over the heart shows that SING and TT‐GRAPPA provide similar noise amplification at moderate and high rates. ConclusionThe proposed SING reconstruction enables significant improvement of acquisition efficiency for calibration data, while matching the reconstruction performance of TT‐GRAPPA. 
    more » « less