Bacterial ice nucleating proteins (INPs) are exceptionally effective in promoting the kinetically hindered transition of water to ice. Their efficiency relies on the assembly of INPs into large functional aggregates, with the size of ice nucleation sites determining activity. Experimental freezing spectra have revealed two distinct, defined aggregate sizes, typically classified as class A and C ice nucleators (INs). Despite the importance of INPs and years of extensive research, the precise number of INPs forming the two aggregate classes, and their assembly mechanism have remained enigmatic. Here, we report that bacterial ice nucleation activity emerges from more than two prevailing aggregate species and identify the specific number of INPs responsible for distinct crystallization temperatures. We find that INP dimers constitute class C INs, tetramers class B INs, and hexamers and larger multimers are responsible for the most efficient class A activity. We propose a hierarchical assembly mechanism based on tyrosine interactions for dimers, and electrostatic interactions between INP dimers to produce larger aggregates. This assembly is membrane-assisted: Increasing the bacterial outer membrane fluidity decreases the population of the larger aggregates, while preserving the dimers. Inversely, Dulbecco’s Phosphate-Buffered Saline buffer increases the population of multimeric class A and B aggregates 200-fold and endows the bacteria with enhanced stability toward repeated freeze-thaw cycles. Our analysis suggests that the enhancement results from the better alignment of dimers in the negatively charged outer membrane, due to screening of their electrostatic repulsion. This demonstrates significant enhancement of the most potent bacterial INs.
more »
« less
This content will become publicly available on May 19, 2026
A New Class of Fungal Ice-Nucleating Proteins with Bacterial Ancestry
Ice-nucleating proteins (INPs) catalyze ice formation at high subzero temperatures, with major biological and environmental implications. While bacterial INPs have been structurally characterized, their counterparts in other organisms remain unknown. Here, we identify a new class of efficient INPs in fungi. These proteins are membrane-free, adopt β-solenoid folds, and multimerize to form large ice-binding surfaces, showing mechanistic parallels with bacterial INPs. Structural modeling, sequence analysis, and functional assays show they are encoded by orthologs of the bacterial InaZ gene, likely acquired via horizontal gene transfer. Our results demonstrate that distinct lineages have independently converged on a common molecular strategy to overcome the energetic barriers of ice formation. The discovery of cell-free INPs provides tools for freezing applications and reveals biophysical constraints on nucleation across life.
more »
« less
- PAR ID:
- 10624080
- Publisher / Repository:
- Chemarxiv
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Wildfires in the western United States are large sources of particulate matter, and the area burned by wildfires is predicted to increase in the future. Some particles released from wildfires can affect cloud formation by serving as ice‐nucleating particles (INPs). INPs have numerous impacts on cloud radiative properties and precipitation development. Wildfires are potentially important sources of INPs, as indicated from previous measurements, but their abundance in the free troposphere has not been quantified. The Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen campaign sampled free tropospheric immersion‐freezing INPs from smoke plumes near their source and downwind, along with widespread aged smoke. The results indicate an enhancement of INPs in smoke plumes relative to out‐of‐plume background air, but the magnitude of enhancement was both temperature and fire dependent. The majority of INPs were inferred to be predominately organic in composition with some contribution from biological sources at modest super cooling, and contributions from minerals at deeper super cooling. A fire involving primarily sagebrush shrub land and aspen forest fuels had the highest INP concentrations measured in the campaign, which is partially attributed to the INP characteristics of lofted, uncombusted plant material. Electron microscopy analysis of INPs also indicated tar balls present in this fire. Parameterization of the plume INP data on a per‐unit‐aerosol surface area basis confirmed that smoke is not an efficient source of INPs. Nevertheless, the high numbers of particles released from, and ubiquity of western US wildfires in summertime, regionally elevate INP concentrations in the free troposphere.more » « less
-
Abstract. Decaying vegetation was determined to be a potentially important source ofatmospheric ice nucleation particles (INPs) in the early 1970s. The bacteriumPseudomonas syringae was the first microorganism with ice nucleationactivity (INA) isolated from decaying leaf litter in 1974. However, the icenucleation characteristics of P. syringae are not compatible withthe characteristics of leaf litter-derived INPs since the latter were foundto be sub-micron in size, while INA of P. syringae depends on muchlarger intact bacterial cells. Here we determined the cumulative icenucleation spectrum and microbial community composition of the historic leaflitter sample 70-S-14 collected in 1970 that conserved INA for 48 years. Themajority of the leaf litter-derived INPs were confirmed to be sub-micron insize and to be sensitive to boiling. Culture-independent microbial communityanalysis only identified Pseudomonas as potential INA.Culture-dependent analysis identified one P. syringae isolate, twoisolates of the bacterial species Pantoea ananatis, and one fungalisolate of Mortierella alpina as having INA among 1170 bacterialcolonies and 277 fungal isolates, respectively. Both Pa. ananatisand M. alpina are organisms that produce heat-sensitive sub-micronINPs. They are thus both likely sources of the INPs present in sample 70-S-14and may represent important terrestrial sources of atmospheric INPs, aconclusion that is in line with other recent results obtained in regard toINPs from soil, precipitation, and the atmosphere.more » « less
-
Abstract. Ice-nucleating particles (INPs) initiate primary ice formation in Arctic mixed-phase clouds (MPCs), altering cloud radiative properties and modulating precipitation. For atmospheric INPs, the complexity of their spatiotemporal variations, heterogeneous sources, and evolution via intricate atmospheric interactions challenge the understanding of their impact on microphysical processes in Arctic MPCs and induce an uncertain representation in climate models. In this work, we performed a comprehensive analysis of atmospheric aerosols at the Arctic coastal site in Ny-Ålesund (Svalbard, Norway) from October to November 2019, including their ice nucleation ability, physicochemical properties, and potential sources. Overall, INP concentrations (NINP) during the observation season were approximately up to 3 orders of magnitude lower compared to the global average, with several samples showing degradation of NINP after heat treatment, implying the presence of proteinaceous INPs. Particle fluorescence was substantially associated with INP concentrations at warmer ice nucleation temperatures, indicating that in the far-reaching Arctic, aerosols of biogenic origin throughout the snow- and ice-free season may serve as important INP sources. In addition, case studies revealed the links between elevated NINP and heat lability, fluorescence, high wind speeds originating from the ocean, augmented concentration of coarse-mode particles, and abundant organics. Backward trajectory analysis demonstrated a potential connection between high-latitude dust sources and high INP concentrations, while prolonged air mass history over the ice pack was identified for most scant INP cases. The combination of the above analyses demonstrates that the abundance, physicochemical properties, and potential sources of INPs in the Arctic are highly variable despite its remote location.more » « less
-
Abstract The Alaskan Layered Pollution and Chemical Analysis (ALPACA) field campaign included deployment of a suite of atmospheric measurements in January–February 2022 with the goal of better understanding atmospheric processes and pollution under cold and dark conditions in Fairbanks, Alaska. We report on measurements of particle composition, particle size, ice nucleating particle (INP) composition, and INP size during an ice fog period (29 January–3 February). During this period, coarse particulate matter (PM10) concentrations increased by 150% in association with a decrease in air temperature, a stronger temperature inversion, and relatively stagnant conditions. Results also show a 18%–78% decrease in INPs during the ice fog period, indicating that particles had activated into the ice fog via nucleation. Peroxide and heat treatments performed on INPs indicated that, on average, the largest contributions to the INP population were heat‐labile (potentially biological, 63%), organic (31%), then inorganic (likely dust, 6%). Measurements of levoglucosan and bulk and single‐particle composition corroborate the presence of dust and aerosols from combustion sources. Heat‐labile and organic INPs decreased during the peak period of the ice fog, indicating those were preferentially activated, while inorganic INPs increased, suggesting they remained as interstitial INPs. In general, INP concentrations were unexpectedly high in Fairbanks compared to other locations in the Arctic during winter. The fact that these INPs likely facilitated ice fog formation in Fairbanks has implications for other high latitude locations subject to the hazards associated with ice fog.more » « less
An official website of the United States government
