null
                            (Ed.)
                        
                    
            
                            Steady-state modeling plays an important role in the design of advanced power converters. Typically, steady-state modeling is completed by time-stepping simulators, which may be slow to converge to steady-state, or by dedicated analysis, which is time-consuming to develop across multiple topologies. Discrete time state-space modeling is a uniform approach to rapidly simulate arbitrary power converter designs. However, the approach requires modification to capture state-dependent switching, such as diode switching or current programmed modulation. This work provides a framework to identify and correct state-dependent switching within discrete time state-space modeling and shows the utility of the proposed method within the power converter design process. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    