Abstract A hierarchical multiscale modeling framework is proposed to simulate flowslide triggering and runout. It couples a system‐scale sliding‐consolidation model (SCM) resolving hydro‐mechanical feedbacks within a flowslide with a local‐scale solver based on the discrete element method (DEM) replicating the sand deformation response in the liquefied regime. This coupling allows for the simulation of a seamless transition from solid‐ to fluid‐like behavior following liquefaction, which is controlled by the grain‐scale dynamics. To investigate the role of grain‐scale interactions, the DEM simulations replace the constitutive model within the SCM framework, enabling the capture of the emergent rate‐dependent behavior of the sand during the inertial regime of motion. For this purpose, a novel algorithm is proposed to ensure the accurate passage of the strain rate from the global analysis to the local DEM solver under both quasi‐static (pre‐triggering) and dynamic (post‐triggering) regimes of motion. Our findings demonstrate that the specifics of the coupling algorithm do not bear significant consequences to the triggering analysis, in that the grain‐scale dynamics is negligible. By contrast, major differences between the results obtained with traditional algorithms and the proposed algorithm are found for the post‐triggering stage. Specifically, the existing algorithms suffer from loss of convergence and require proper numerical treatment to capture the micro‐inertial effects arising from the post‐liquefaction particle agitation responsible for viscous‐like effects that spontaneously regulate the flowslide velocity. These findings emphasize the important role of rate‐dependent feedback for the analysis of natural hazards involving granular materials, especially for post‐failure propagation analysis. 
                        more » 
                        « less   
                    This content will become publicly available on July 1, 2026
                            
                            A rheological model for loose sands with insights from DEM
                        
                    
    
            Abstract A rheological model for loose granular media is developed to capture both solid-like and fluid-like responses during shearing. The proposed model is built by following the mathematical structure of an extended Kelvin–Voigt model, where an elastic spring and plastic slider act in parallel to a viscous damper. This arrangement requires the partition of the total stress into rate-independent and rate-dependent stress components. To model the solid-like behavior, a simple frictional plasticity model is adopted without modifications, thus contributing to the rate-independent stress. Instead, the fluid-like or rate-dependent stress is further decomposed into deviatoric and volumetric parts, by proposing a new formulation based on a combination of the m(I) relation, originally developed under pressure-controlled shear, with a pressure-shear rate relation derived under volume-controlled shear. The proposed formulation allows the model to capture both the increase in the friction coefficient and the enhanced dilation at high shear rates. High-fidelity simulation data, obtained from discrete element method and multiscale modelling, are used to evaluate the performance of the proposed constitutive model. The model provides accurate results under both drained and undrained simple shear paths across a wide range of shear rates. Furthermore, it successfully reproduces at much lower computational cost the flowslide mobility computed through multiscale simulations, which is primarily regulated by the shear rate dependence of the material properties during the dynamic runout stage. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1854951
- PAR ID:
- 10625735
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Granular Matter
- Volume:
- 27
- Issue:
- 3
- ISSN:
- 1434-5021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This study investigates the shear rate dependent margination of micro-particles (MPs) with different shapes in blood flow through numerical simulations. We develop a multiscale computational model to handle the fluid–structure interactions involved in the blood flow simulations. The lattice Boltzmann method (LBM) is used to solve the plasma dynamics and a coarse-grained model is employed to capture the dynamics of red blood cells (RBCs) and MPs. These two solvers are coupled together by the immersed boundary method (IBM). The shear rate dependent margination of sphere MPs is firstly investigated. We find that margination of sphere MPs dramatically increases with the increment of wall shear rate  ω under 800 s −1 , induced by the breaking of rouleaux in blood flow. However, the margination probability only slowly grows when  ω > 800 s −1 . Furthermore, the shape effect of MPs is examined by comparing the margination behaviors of sphere-like, oblate-like and prolate-like MPs under different wall shear rates. We find that the margination of MPs is governed by the interplay of two factors: hydrodynamic collisions with RBCs including the collision frequency and collision displacement of MPs, and near wall dynamics. MPs that demonstrate poor performance in one process such as collision frequency may stand out in the other process like near wall dynamics. Specifically, the ellipsoidal MPs (oblate and prolate) with small aspect ratio (AR) outperform those with large AR regardless of the wall shear rate, due to their better performance in both the collision with RBCs and near wall dynamics. Additionally, we find there exists a transition shear rate region 700 s −1 <  ω < 900 s −1 for all of these MPs: the margination probability dramatically increases with the shear rate below this region and slowly grows above this region, similar to sphere MPs. We further use the surface area to volume ratio (SVR) to distinguish different shaped MPs and illustrate their shear rate dependent margination in a contour in the shear rate–SVR plane. It is of significance that we can approximately predict the margination of MPs with a specific SVR. All these simulation results can be potentially applied to guide the design of micro-drug carriers for biomedical applications.more » « less
- 
            Stress-modified activated processes are analyzed using a model first proposed by Evans and Polanyi that uses transition-state theory to calculate the effect of some perturbation, described by an intensive variable, \(I\), on the reaction rate. They suggested that the rate constant depended primarily on the equilibrium between the transition state and the reactant, which, in turn, depends on the effect of the perturbation \(I\) on the Gibbs free energy, \(G=U-TS+IC\), where \(C\) is a variable conjugate to \(I\). For example, in the case of a hydrostatic pressure \(P\), the conjugate variable is the volume, \(-V\). This allows a pressure-dependent rate to be calculated from the equilibrium constant between the reactant and transition state. Advantages to this approach are that the analysis is independent of the pathway between the two states and can simultaneously include the effect of multiple perturbations. These ideas are applied to the Prandtl–Tomlinson model, which analyses the force-induced transition rate over a surface energy barrier. The Evans–Polanyi analysis is independent of the shape of the sliding potential and merely requires the locations of the initial and transition states. It also allows the effects of both normal and shear stresses to be analyzed to identify the molecular origins of the well-known pressure-dependent shear stress: \(\tau ={\tau }_{0}+{\mu }_{L}P\), where \({\tau }_{0}\) is a pressure-independent stress. The analysis reveals that \({\mu }_{L}\) depends on the molecular corrugation of the potential and that \({\tau }_{0}\) is velocity dependent, in accord with an empirical equation proposed by Briscoe and Evans.more » « less
- 
            Zinc dialkyldithiophosphate (ZDDP), the most widely used antiwear additive in engine oils, has been extensively studied over the last few decades to help understand the origin of its effectiveness. Glassy phosphate-based tribofilms, approximately 100 nm thick, are often formed on surfaces sliding in ZDDP-containing oils, which help to prevent or reduce wear. Recent studies reveal that a combination of applied shear and compressive stresses drive mechanochemical reactions that promote tribofilm growth, and that growth is further accelerated by increased temperature. While recent work has shown that compressive stress alone is insufficient to form tribofilms, the individual effects of the shear stress and compressive stress are not fully understood. Here, shear and compressive stresses are studied separately by using different ratios of high-viscosity, high-traction fluids for testing. This allows the areal mean compressive and shear stresses in the fluid when confined at a loaded sliding interface, to be independently controlled while driving tribofilm growth, which is a system we refer to as a stress-controlled mechanochemical reactor. Tribofilms derived from a secondary ZDDP were generated using a tungsten carbide/tungsten carbide ball-on-disk contact in the full elastohydrodynamic lubrication (EHL) regime using a mini-traction machine (MTM), meaning that solid–solid contact is avoided. The MTM was equipped with a spacer layer imaging (SLIM) capability, permitting in situ measurement of the tribofilm thickness during its growth. The well-separated sliding surfaces generated by the high-viscosity fluids confirm that solid–solid contact is not required for tribofilm formation. Under these full fluid film EHL conditions, shear stress and temperature promote tribofilm growth in accordance with stress-augmented thermal activation. In contrast, under constant shear stress and temperature, compressive stress has the opposite effect, inhibiting tribofilm growth. Using the extended Eyring model for shear- and hydrostatic pressure-affected reaction kinetics, an activation energy of 0.54 ± 0.04 eV is found, consistent with prior studies of ZDDPs. The activation volume for shear stress is found to be 0.18 ± 0.06 nm 3 , while that for the compressive stress component is much smaller, at 0.010 ± 0.004 nm 3 . This not only confirms prior work supporting that shear stress drives tribofilm growth, but demonstrates and quantifies how compressive stress inhibits growth, consistent with the rate-limiting step in tribofilm growth involving a bond-breaking reaction. Implications of these findings are discussed.more » « less
- 
            It has been established that Newton’s law of viscosity fails for fluids under strong confinement as the strain-rate varies significantly over molecular length-scales. We thereby investigate if a nonlocal shear stress accounting for the strain-rate of an adjoining region by a convolution relation with a nonlocal viscosity kernel can be employed to predict the gravity-driven isothermal flow of a Weeks–Chandler–Andersen fluid in a nanochannel. We estimate, using the local average density model, the fluid’s viscosity kernel from isotropic bulk systems of corresponding state points by the sinusoidal transverse force method. A continuum model is proposed to solve the nonlocal hydrodynamics whose solutions capture the key features and agree qualitatively with the results of non-equilibrium molecular dynamics simulations, with deviations observed mostly near the fluid–channel interface.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
