skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two tiers, not one: Different sources of extrinsic mortality have opposing effects on life history traits
Abstract Guided by concepts from life history (LH) theory, a large human research literature has tested the hypothesis that exposures to extrinsic mortality (EM) promote the development of faster LH strategies (e.g., earlier/faster reproduction, higher offspring number). A competing model proposes that, because EM in the past was intimately linked to energetic constraints, such exposures specifically led to the development of slower LH strategies. We empirically address this debate by examining (1) LH variation among small-scale societies under different environmental conditions; (2) country-, regional- and community-level correlations between ecological conditions, mortality, maturational timing, and fertility; (3) individual-level correlations between this same set of factors; and (4) natural experiments leveraging the impact of externally-caused changes in mortality on LH traits. Partially supporting each model, we found that harsh conditions encompassing energetic stress and ambient cues to EM (external cues received through sensory systems) havecountervailing effectson the development of LH strategies, both delaying pubertal maturation and promoting an accelerated pace of reproduction and higher offspring number. We conclude that, although energetics are fundamental to many developmental processes, providing afirst tierof environmental influence, this first tier alone cannot explain these countervailing effects. An importantsecond tierof environmental influence is afforded by ambient cues to EM. We advance a 2-tiered model that delineates this second tier and its central role in regulating development of LH strategies. Consideration of the first and second tier together is necessary to account for the observed countervailing shifts toward both slower and faster LH traits.  more » « less
Award ID(s):
2051264
PAR ID:
10625981
Author(s) / Creator(s):
; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Behavioral and Brain Sciences
ISSN:
0140-525X
Page Range / eLocation ID:
1 to 75
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Environmental drivers of within-population reproductive patterns are often hypothesized to lead to reproductive strategies tuned to local conditions. Organisms adjust energy allocation between survival and reproduction based on experience, age, lifespan and resource availability. Variation in these energetic investments can be described as different demographic tactics which are expected to optimize the fitness of local populations. These ideas are largely supported by both empirical and model-based studies but research identifying specific strategies and their corresponding environmental drivers within wild populations remains rare. Using 12 years of data, we investigated reproductive investment strategies in a relatively short-lived resident songbird, the mountain chickadee (Poecile gambeli), at two elevations that differ in environmental harshness in the North American Sierra Nevada mountains. Challenging winter environments at high elevations impose strong selection pressure on survival-related traits (e.g. specialized spatial cognition associated with food caching) and significantly shorten the length of the reproductive window. Here, we show that chickadees at a higher elevation lay smaller clutches (ca0.41 fewer eggs) and produce fewer (ca0.25 fewer nestlings) but larger offspring (ca0.4 g heavier) compared to lower elevation residents. Due to the harsher and less predictable environmental conditions at higher elevations, this investment strategy in this resident species likely leads to the production of offspring with greater chances of survival. Overall, our results show that within-species differences in life history strategies may evolve over a small spatial scale along strong environmental gradients. 
    more » « less
  2. Abstract Understanding factors that determine a species' geographical range is crucial for predicting climate‐induced range shifts. Two milkweed species,Asclepias syriacaandAsclepias speciosa, have overlapping ranges along a moisture gradient in North America and are primary food sources for endangered monarch caterpillars. With decreasing moisture, long‐lived species often exhibit slower growth and greater drought tolerance, while many annual species exhibit faster growth strategies. Using this fast‐slow framework, we assessed whether traits of these two sister species differ along a fast‐slow growth continuum and could explain their distributions. We measured leaf and root functional traits in common gardens and greenhouse experiments. In key measures indicative of drought tolerance (e.g., growth, transpiration, and water potentials), the species were nearly identical. Contrary to expectations,A. speciosadid not exhibit greater drought tolerance, raising the question of how it survives in the more arid west. A reciprocal transplant study showed selection againstA. syriacain the western garden and thatA. speciosawas better able to avoid seedling mortality. Focusing on seedling establishment, we found thatA. speciosaexhibited faster deep‐root development and a narrow leaf phenotype associated with slower wilting and delayed drought‐induced mortality. Rather than differences on the fast‐slow growth spectrum, our results indicate thatA. speciosaavoids drought through faster deep‐root growth and a slower wilting phenotype. Our study suggests thatA. syriaca'srange is limited by its drought tolerance, while A. speciosaemploys a number of drought avoidance strategies to survive in more arid environments. 
    more » « less
  3. Abstract Seasonal changes in reproduction have been described for many taxa. As reproductive seasons progress, females often shift from greater energetic investment in many small offspring towards investing less total energy into fewer, better provisioned (i.e. larger) offspring. The underlying causes of this pattern have not been assessed in many systems.Two primary hypotheses have been proposed to explain these patterns. The first is an adaptive hypothesis from life‐history theory: early offspring have a survival advantage over those produced later. Accordingly, selection favours females that invest in offspring quantity early in the season and offspring quality later. The second hypothesis suggests these patterns are not intrinsic but result from passive responses to seasonal changes in the environment experienced by reproducing females (i.e. maternal environment).To disentangle the causes underlying this pattern, which has been reported in brown anole lizards (Anolis sagrei), we performed complementary field and laboratory studies. The laboratory study carefully controlled maternal environments and quantified reproductive patterns throughout the reproductive season for each female. The field study measured similar metrics from free ranging lizards across an entire reproductive season.In the laboratory, females increased relative effort per offspring as the reproductive season progressed; smaller eggs were laid earlier, larger eggs were laid later. Moreover, we observed significant among‐individual variation in seasonal changes in reproduction, which is necessary for traits to evolve via natural selection. Because these patterns consistently emerge under controlled laboratory conditions, they likely represent an intrinsic and potentially adaptive adjustment of reproductive effort as predicted by life‐history theory.The field study revealed similar trends, further suggesting that intrinsic patterns observed in the laboratory are strong enough to persist despite the environmental variability that characterizes natural habitats. The observed patterns are indicative of an adaptive seasonal shift in parental investment in response to a deteriorating offspring environment: allocating greater resources to late‐produced offspring likely enhances maternal fitness. 
    more » « less
  4. Abstract Climate change is altering the intensity and variability of environmental stress that organisms and ecosystems experience, but effects of changing stress regimes are not well understood. We examined impacts of constant and variable sublethal hypoxia exposures on multiple biological processes in the sea urchinStrongylocentrotus purpuratus, a key grazer in California Current kelp forests, which experience high variability in physical conditions. We quantified metabolic rates, grazing, growth, calcification, spine regeneration, and gonad production under constant, 3-hour variable, and 6-hour variable exposures to sublethal hypoxia, and compared responses for each hypoxia regime to normoxic conditions. Sea urchins in constant hypoxia maintained baseline metabolic rates, but had lower grazing, gonad development, and calcification rates than those in ambient conditions. The sublethal impacts of variable hypoxia differed among biological processes. Spine regrowth was reduced under all hypoxia treatments, calcification rates under variable hypoxia were intermediate between normoxia and constant hypoxia, and gonad production correlated negatively with continuous time under hypoxia. Therefore, exposure variability can differentially modulate the impacts of sublethal hypoxia, and may impact sea urchin populations and ecosystems via reduced feeding and reproduction. Addressing realistic, multifaceted stressor exposures and multiple biological responses is crucial for understanding climate change impacts on species and ecosystems. 
    more » « less
  5. ABSTRACT Ocean acidification (OA) resulting from anthropogenic CO2 emissions is impairing the reproduction of marine organisms. While parental exposure to OA can protect offspring via carryover effects, this phenomenon is poorly understood in many marine invertebrate taxa. Here, we examined how parental exposure to acidified (pH 7.40) versus ambient (pH 7.72) seawater influenced reproduction and offspring performance across six gametogenic cycles (13 weeks) in the estuarine sea anemone Nematostella vectensis. Females exhibited reproductive plasticity under acidic conditions, releasing significantly fewer but larger eggs compared to ambient females after 4 weeks of exposure, and larger eggs in two of the four following spawning cycles despite recovering fecundity, indicating long-term acclimatization and greater investment in eggs. Males showed no changes in fecundity under acidic conditions but produced a greater percentage of sperm with high mitochondrial membrane potential (MMP; a proxy for elevated motility), which corresponded with higher fertilization rates relative to ambient males. Finally, parental exposure to acidic conditions did not significantly influence offspring development rates, respiration rates, or heat tolerance. Overall, this study demonstrates that parental exposure to acidic conditions impacts gamete production and physiology but not offspring performance in N. vectensis, suggesting that increased investment in individual gametes may promote fitness. 
    more » « less