skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 21, 2025

Title: Dynamic covalent and noncovalent assembly of o -nitrosocumene in organic solvents and water
ortho-Nitrosocumene (o-NC) exhibits dynamic N,N bonding, interchanging monomer and E/Z-azodioxide dimer structures, the extent of which depends on the environment. As a solid, o-NC is a Z-dimer; in organic solvent, the monomer is favored; and in water, dimers are favored. A supramolecular assembly of o-NC is observed as a separate species by NMR in water, shown to be a novel nanometer-sized aggregate containing B2000 molecules.  more » « less
Award ID(s):
2204046
PAR ID:
10626473
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry (London)
Date Published:
Journal Name:
Chemical Communications
Volume:
60
Issue:
94
ISSN:
1359-7345
Page Range / eLocation ID:
13899 to 13902
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The formation of dimer [(μ-Cl)Rh-(κ3(P,Si,Si)PhP(o-C6H4CH2SiiPr2)(o-C6H4CH2SiiPrnPr))]2 (Rh-3) with an n-propyl group on one of the silicon atoms as a minor product was affected by the reaction of [RhCl(COD)]2 with proligand PhP(o-C6H4CH2SiHiPr2)2, L1. The major product of the reaction was monomeric 14-electron Rh(III) complex [ClRh(κ3(P,Si,Si)PhP(o-C6H4CH2SiiPr2)2)] (Rh-1). Computations revealed that the monomer–dimer equilibrium is shifted toward the monomer with four isopropyl substituents on the two Si atoms of the ligand as in Rh-1; conversely, the dimer is favored with only one n-propyl as in Rh-3, and with less bulky alkyl substituents such as in [ClRh(κ3(P,Si,Si)PhP(o-C6H4CH2SiMe2)2]2 (Rh-2). Computations on the mechanism of formation of Rh-3 directly from [RhCl(COD)]2 are in agreement with the experimental findings and it is found to be less energetic than if stemming from Rh-1. Additionally, a Si–O–Si complex, [μ-Cl-Rh{κ3(P,Si,C)PPh(o-C6H4CH2SiiPrO SiiPr2CH-o-C6H4)}]2, Rh-4, is generated from the reaction of Rh-1 with adventitious water as a result of intramolecular C–H activation. 
    more » « less
  2. The syntheses of (DIM)Ni(NO 3 ) 2 and (DIM)Ni(NO 2 ) 2 , where DIM is a 1,4-diazadiene bidentate donor, are reported to enable testing of bis boryl reduced N-heterocycles for their ability to carry out stepwise deoxygenation of coordinated nitrate and nitrite, forming O(Bpin) 2 . Single deoxygenation of (DIM)Ni(NO 2 ) 2 yields the tetrahedral complex (DIM)Ni(NO)(ONO), with a linear nitrosyl and κ 1 -ONO. Further deoxygenation of (DIM)Ni(NO)(ONO) results in the formation of dimeric [(DIM)Ni(NO)] 2 , where the dimer is linked through a Ni–Ni bond. The lost reduced nitrogen byproduct is shown to be N 2 O, indicating N–N bond formation in the course of the reaction. Isotopic labelling studies establish that the N–N bond of N 2 O is formed in a bimetallic Ni 2 intermediate and that the two nitrogen atoms of (DIM)Ni(NO)(ONO) become symmetry equivalent prior to N–N bond formation. The [(DIM)Ni(NO)] 2 dimer is susceptible to oxidation by AgX (X = NO 3 − , NO 2 − , and OTf − ) as well as nitric oxide, the latter of which undergoes nitric oxide disproportionation to yield N 2 O and (DIM)Ni(NO)(ONO). We show that the first step in the deoxygenation of (DIM)Ni(NO)(ONO) to liberate N 2 O is outer sphere electron transfer, providing insight into the organic reductants employed for deoxygenation. Lastly, we show that at elevated temperatures, deoxygenation is accompanied by loss of DIM to form either pyrazine or bipyridine bridged polymers, with retention of a BpinO − bridging ligand. 
    more » « less
  3. A new N-alkynylated dithieno[3,2- b :2′,3′- d ]pyrrole (DTP) monomer was synthesized using a Buchwald–Hartwig amination of 3,3′-dibromo-2,2′-bithiophene with pent-4-yn-1-amine. The obtained monomer was investigated for the possibility of a pre-polymerization modification via Huisgen 1,3-dipolar cycloaddition (“click”) reaction with azide-containing organic compounds. The synthesized N-alkynylated DTP monomer is soluble in a number of organic solvents and reacts with organic azides via “click” reactions in mild conditions, achieving high yields. The N-alkynylated DTP monomer and its “click”-modified derivative can be electropolymerized to form polymeric films. Herein, the synthesis and characterization of a “click” modified DTP monomer, its pre-modified derivative, and their corresponding polymers are described. The developed method is a facile route to synthesize a new generation of various N-functionalized DTP homopolymers. 
    more » « less
  4. It was recently found that the classical 3d O(N) model in the semi-infinite geometry can exhibit an “extraordinary-log” boundary universality class, where the spin-spin correlation function on the boundary falls off as < S(x) S(0)> ~ 1/ (log x)^q. This universality class exists for a range 2 ≤ N < Nc and Monte-Carlo simulations and conformal bootstrap indicate Nc > 3. In this work, we extend this result to the 3d O(N) model in an infinite geometry with a plane defect. We use renormalization group (RG) to show that in this case the extraordinary-log universality class is present for any finite N ≥ 2. We additionally show, in agreement with our RG analysis, that the line of defect fixed points which is present at infinite N is lifted to the ordinary, special (no defect) and extraordinary-log universality classes by 1/N corrections. We study the “central charge” a for the O(N) model in the boundary and interface geometries and provide a non-trivial detailed check of an a-theorem by Jensen and O’Bannon. Finally, we revisit the problem of the O(N) model in the semi-infinite geometry. We find evidence that at N = Nc the extraordinary and special fixed points annihilate and only the ordinary fixed point is left for N > Nc . 
    more » « less
  5. A cucurbit[8]uril (CB[8])-secured platinum terpyridyl chloride dimer was used as a photosensitizer and hydrogen-evolving catalyst for the photoreduction of water. Volumes of produced hydrogen were up to 25 and 6 times larger than those obtained with the corresponding free and cucurbit[7]uril-bound platinum monomer, respectively, at equal Pt concentration. The thermodynamics of the proton-coupled electron transfer from the Pt( ii )–Pt( ii ) dimer to the corresponding Pt( ii )–Pt( iii )–H hydride key intermediate, as quantified by density functional theory, suggest that CB[8] secures the Pt( ii )–Pt( ii ) dimer in a particularly reactive conformation that promotes hydrogen formation. 
    more » « less