skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Novel phylogenomic inference and ‘Out of Asia’ biogeography of cobras, coral snakes and their allies
Estimation of evolutionary relationships among lineages that rapidly diversified can be challenging, and, in such instances, inaccurate or unresolved phylogenetic estimates can lead to erroneous conclusions regarding historical geographical ranges of lineages. One example underscoring this issue has been the historical challenge posed by untangling the biogeographic origin of elapoid snakes, which includes numerous dangerously venomous species as well as species not known to be dangerous to humans. The worldwide distribution of this lineage makes it an ideal group for testing hypotheses related to historical faunal exchanges among the many continents and other landmasses occupied by contemporary elapoid species. We developed a novel suite of genomic resources, included worldwide sampling, and inferred a robust estimate of evolutionary relationships, which we leveraged to quantitatively estimate geographical range evolution through the deep-time history of this remarkable radiation. Our phylogenetic and biogeographical estimates of historical ranges definitively reject a lingering former ‘Out of Africa’ hypothesis and support an ‘Out of Asia’ scenario involving multiple faunal exchanges between Asia, Africa, Australasia, the Americas and Europe.  more » « less
Award ID(s):
2323125
PAR ID:
10626489
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
The Royal Society
Date Published:
Journal Name:
Royal Society Open Science
Volume:
11
Issue:
8
ISSN:
2054-5703
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We describe a new species of fanged frog (genus Limnonectes) from Mindoro and Semirara Islands, of the Mindoro Pleistocene Aggregate Island Complex, of the central Philippines. Although morphologically indistinguishable from its closest relative, Limnonectes acanthi, of the Palawan faunal region, the two species can be readily diagnosed on the basis of spectral (dominant frequency) and temporal (pulse number and structure) properties of their advertisement calls, and their allopatric insular geographic ranges on permanently separate geological platforms which have not been connected by dry land in the recent geological past—all of which we interpret as congruent and independent lines of evidence supporting our recognition of two independently evolving evolutionary lineages (species). Ribosomal RNA mitochondrial gene sequences were used to provide genetic identification of specimens and estimate phylogenetic relationships; genetic divergences between Palawan and Mindoro faunal regions exceed those estimated among other, uncontroversial, phenotypically distinct Philippine species with equivalent levels of allopatry and biogeographic isolation. The recognition of the new species further emphasizes the degree to which even well-studied Philippine landmasses still harbor unrecognized biodiversity, and suggests that other widespread Philippine fanged frogs should be scrutinized for non-traditional diagnostic character differences (mate-recognition signal divergence, ecological differences, larval characteristics, life-history trait variation), especially when their geographic ranges span the archipelago’s permanent, deep-water trenches, which define its well-characterized Pleistocene Aggregate Island Complexes 
    more » « less
  2. The sunflower family, Asteraceae, comprises 10% of all flowering plant species and displays an incredible diversity of form. Asteraceae are clearly monophyletic, yet resolving phylogenetic relationships within the family has proven difficult, hindering our ability to understand its origin and diversification. Recent molecular clock dating has suggested a Cretaceous origin, but the lack of deep sampling of many genes and representative taxa from across the family has impeded the resolution of migration routes and diversifications that led to its global distribution and tremendous diversity. Here we use genomic data from 256 terminals to estimate evolutionary relationships, timing of diversification(s), and biogeographic patterns. Our study places the origin of Asteraceae at ∼83 MYA in the late Cretaceous and reveals that the family underwent a series of explosive radiations during the Eocene which were accompanied by accelerations in diversification rates. The lineages that gave rise to nearly 95% of extant species originated and began diversifying during the middle Eocene, coincident with the ensuing marked cooling during this period. Phylogenetic and biogeographic analyses support a South American origin of the family with subsequent dispersals into North America and then to Asia and Africa, later followed by multiple worldwide dispersals in many directions. The rapid mid-Eocene diversification is aligned with the biogeographic range shift to Africa where many of the modern-day tribes appear to have originated. Our robust phylogeny provides a framework for future studies aimed at understanding the role of the macroevolutionary patterns and processes that generated the enormous species diversity of Asteraceae. 
    more » « less
  3. null (Ed.)
    One of the most urgent contemporary tasks for taxonomists and evolutionary biologists is to estimate the number of species on earth. Recording alpha diversity is crucial for protecting biodiversity, especially in areas of elevated species richness, which coincide geographically with increased anthropogenic environmental pressures - the world’s so-called biodiversity hotspots. Although the distribution of Puddle frogs of the genus Occidozyga in South and Southeast Asia includes five biodiversity hotspots, the available data on phylogeny, species diversity, and biogeography are surprisingly patchy. Samples analyzed in this study were collected throughout Southeast Asia, with a primary focus on Sundaland and the Philippines. A mitochondrial gene region comprising ~ 2000 bp of 12S and 16S rRNA with intervening tRNA Valine and three nuclear loci (BDNF, NTF3, POMC) were analyzed to obtain a robust, time-calibrated phylogenetic hypothesis. We found a surprisingly high level of genetic diversity within Occidozyga, based on uncorrected p-distance values corroborated by species delimitation analyses. This extensive genetic diversity revealed 29 evolutionary lineages, defined by the > 5% uncorrected p-distance criterion for the 16S rRNA gene, suggesting that species diversity in this clade of phenotypically homogeneous forms probably has been underestimated. The comparison with results of other anuran groups leads to the assumption that anuran species diversity could still be substantially underestimated in Southeast Asia in general. Many genetically divergent lineages of frogs are phenotypically similar, indicating a tendency towards extensive morphological conservatism. We present a biogeographic reconstruction of the colonization of Sundaland and nearby islands which, together with our temporal framework, suggests that lineage diversification centered on the landmasses of the northern Sunda Shelf. This remarkably genetically structured group of amphibians could represent an exceptional case for future studies of geographical structure and diversification in a widespread anuran clade spanning some of the most pronounced geographical barriers on the planet (e.g., Wallace’s Line). Studies considering gene flow, morphology, ecological and bioacoustic data are needed to answer these questions and to test whether observed diversity of Puddle frog lineages warrants taxonomic recognition. 
    more » « less
  4. Abstract Inferring evolutionary relationships among recently diverged lineages is necessary to understand how isolating barriers produce independent lineages. Here, we investigate the phylogenetic relationships between three incompletely isolated and closely related mushroom‐feedingDrosophilaspecies. These species form theDrosophila subquinariaspecies complex and consist of one Eurasian species (D. transversa) and two widespread North American species (D. subquinariaandD. recens) that are sympatric in central Canada. Although patterns of pre‐ and post‐mating isolation among these species are well characterized, previous work on their phylogenetic relationships is limited and conflicting. In this study, we generated a multi‐locus data set of 29 loci from across the genome sequenced in a population sample from each species, and then, we inferred species relationships and patterns of introgression. We find strong statistical support thatD. subquinariais paraphyletic, showing that samples from the geographic region sympatric withD. recensare most closely related toD. recens, whereas samples from the geographic region allopatric withD. recensare most closely related toD. transversa. We present several lines of evidence that both incomplete lineage sorting and gene flow are causing phylogenetic discordance. We suggest that ongoing gene flow primarily fromD. recensintoD. subquinariain the sympatric part of their ranges causes phylogenetic uncertainty in the evolutionary history of these species. Our results highlight how population genetic data can be used to disentangle the sources of phylogenetic discordance among closely related species. 
    more » « less
  5. The historical accuracy of building taxonomies is improved when they are based on phylogenetic inference (i.e., the resultant classifications are less apt to misrepresent evolutionary history). In fact, taxonomies inferred from statistically significant diagnostic morphological characters in the absence of phylogenetic considerations, can contain non-monophyletic lineages. This is especially true at the species level where small amounts of gene flow may not preclude the evolution of localized adaptions in different geographic areas while underpinning the paraphyletic nature of each population with respect to the other. We illustrate this point by examining genetic and morphological variation among three putatively allopatric populations of the granite-dwelling Bent-toed Gecko Cyrtodactylus aequalis from hilly regions in southeastern Myanmar. In the absence of molecular phylogenetic inference, a compelling argument for three morphologically diagnosable species could be marshaled. However, when basing the morphological analyses of geographic variation on a molecular phylogeny, there is a more compelling argument that only one species should be recognized. We are cognizant of the fact however, that when dealing with rare species or specimens for which no molecular data are possible, judicious morphological analyses are the only option—and the desired option given the current worldwide biodiversity crisis. 
    more » « less