skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Social Microbial Transmission in a Solitary Mammal
ABSTRACT Microbial transmission is hypothesised to be a major benefit of sociality, facilitated by affiliative behaviours such as grooming and communal nesting in group‐living animals. Whether microbial transmission is also present in animals that do not form groups because territoriality limits interactions and prevents group formation remains unknown. Here, we investigate relationships among gut microbiota, population density and dynamic behavioural and spatial measures of territoriality in wild North American red squirrels (Tamiasciurus hudsonicus). Periods of high population density predicted population‐level gut microbial homogeneity but individual‐level diversification, alongside changes in obligately anaerobic, non‐sporulating taxa indicative of social transmission. Microbial alpha‐diversity increased with more frequent territorial intrusions, and pairs with stronger intrusion‐based social associations had more similar gut microbiota. As some of the first evidence for social microbial transmission in a solitary system, our findings suggest that fluctuations in density and territorial behaviours can homogenise and diversify host microbiomes among otherwise non‐interacting animals.  more » « less
Award ID(s):
2338394 2338395
PAR ID:
10626527
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
28
Issue:
8
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Comparing the diversity of gut microbiota between and within social insect colonies can illustrate interactions between bacterial community composition and host behaviour. In many eusocial insect species, different workers exhibit different task behaviours. Evidence of compositional differences between core microbiota in different worker types could suggest a microbial association with the division of labour among workers. Here, we present the core microbiota ofAphaenogaster piceaant workers with different task behaviours. The genusAphaenogasteris abundant worldwide, yet the associated microbiota of this group is unstudied. Bacterial communities fromAphaenogaster piceagut samples in this study consist of 19 phyla, dominated by Proteobacteria, Cyanobacteria and Firmicutes. Analysis of 16S rRNA gene sequences reveals distinct similarity clustering ofAphaenogaster piceagut bacterial communities in workers that have more interactions with the refuse piles. Though gut bacterial communities of nurse and foraging ants are similar in overall composition and structure, the worker groups differ in relative abundances of dominant taxa. Gut bacterial communities from ants that have more interactions with refuse piles are dominated by amplicon sequence variants associated with Entomoplasmataceae. Interaction with faecal matter via refuse piles seems to have the greatest impact on microbial taxa distribution, and this effect appears to be independent of worker type. This is the first report surveying the gut microbiome community composition ofAphaenogasterants. 
    more » « less
  2. ABSTRACT Microbial environmental transmission among individuals plays an important role in shaping the microbiomes of many species. Despite the importance of the microbiome for host fitness, empirical investigations on environmental transmission are scarce, particularly in systems where interactions across multiple trophic levels influence symbiotic dynamics. Here, we explore microbial transmission within insect microbiomes, focusing on solitary bees. Specifically, we investigate the environmental transmission hypothesis, which posits that solitary bees acquire and deposit their associated microbiota from and to their surroundings, especially flowers. Using experimental setups, we examine the transmission dynamics ofApilactobacillus micheneri, a fructophilic and acidophilic bacterium, between the solitary beeOsmia lignaria(Megachilidae) and the plantPhacelia tanacetifolia(Boraginaceae). Our results demonstrate that bees not only acquire bacteria from flowers but also deposit these microbes onto uninoculated flowers for other bees to acquire them, supporting a bidirectional microbial exchange. We therefore find empirical support for the environmental transmission hypothesis, and we discuss the multitrophic dependencies that facilitate microbial transmission between bees and flowers. 
    more » « less
  3. Abstract BackgroundInter-population variation in host-associated microbiota reflects differences in the hosts’ environments, but this characterization is typically based on studies comparing few populations. The diversity of natural habitats and captivity conditions occupied by any given host species has not been captured in these comparisons. Moreover, intraspecific variation in gut microbiota, generally attributed to diet, may also stem from differential acquisition of environmental microbes—an understudied mechanism by which host microbiomes are directly shaped by environmental microbes. To more comprehensively characterize gut microbiota in an ecologically flexible host, the ring-tailed lemur (Lemur catta; n = 209), while also investigating the role of environmental acquisition, we used 16S rRNA sequencing of lemur gut and soil microbiota sampled from up to 13 settings, eight in the wilderness of Madagascar and five in captivity in Madagascar or the U.S. Based on matched fecal and soil samples, we used microbial source tracking to examine covariation between the two types of consortia. ResultsThe diversity of lemur gut microbes varied markedly within and between settings. Microbial diversity was not consistently greater in wild than in captive lemurs, indicating that this metric is not necessarily an indicator of host habitat or environmental condition. Variation in microbial composition was inconsistent both with a single, representative gut community for wild conspecifics and with a universal ‘signal of captivity’ that homogenizes the gut consortia of captive animals. Despite the similar, commercial diets of captive lemurs on both continents, lemur gut microbiomes within Madagascar were compositionally most similar, suggesting that non-dietary factors govern some of the variability. In particular, soil microbial communities varied across geographic locations, with the few samples from different continents being the most distinct, and there was significant and context-specific covariation between gut and soil microbiota. ConclusionsAs one of the broadest, single-species investigations of primate microbiota, our study highlights that gut consortia are sensitive to multiple scales of environmental differences. This finding begs a reevaluation of the simple ‘captive vs. wild’ dichotomy. Beyond the important implications for animal care, health, and conservation, our finding that environmental acquisition may mediate aspects of host-associated consortia further expands the framework for how host-associated and environmental microbes interact across different microbial landscapes. 
    more » « less
  4. Abstract Host-microbe interactions are intimately linked to eukaryotic evolution, particularly in sap-sucking insects that often rely on obligate microbial symbionts for nutrient provisioning. Cicadas (Cicadidae: Auchenorrhyncha) specialize on xylem fluid and derive many essential amino acids and vitamins from intracellular bacteria or fungi (Hodgkinia,Sulcia, andOphiocordyceps) that are propagated via transmission from mothers to offspring. Despite the beneficial role of these non-gut symbionts in nutrient provisioning, the role of beneficial microbiota within the gut remains unclear. Here, we investigate the relative abundance and impact of host phylogeny and ecology on gut microbial diversity in cicadas using 16S ribosomal RNA gene amplicon sequencing data from 197 wild-collected cicadas and new mitochondrial genomes across 38 New Zealand cicada species, including natural hybrids between one pair of two species. We find low abundance and a lack of phylogenetic structure and hybrid effects but a significant role of elevation in explaining variation in gut microbiota. 
    more » « less
  5. Introduction Interest for bee microbiota has recently been rising, alleviating the gap in knowledge in regard to drivers of solitary bee gut microbiota. However, no study has addressed the microbial acquisition routes of tropical solitary bees. For both social and solitary bees, the gut microbiota has several essential roles such as food processing and immune responses. While social bees such as honeybees maintain a constant gut microbiota by direct transmission from individuals of the same hive, solitary bees do not have direct contact between generations. They thus acquire their gut microbiota from the environment and/or the provision of their brood cell. To establish the role of life history in structuring the gut microbiota of solitary bees, we characterized the gut microbiota of Centris decolorata from a beach population in Mayagüez, Puerto Rico. Females provide the initial brood cell provision for the larvae, while males patrol the nest without any contact with it. We hypothesized that this behavior influences their gut microbiota, and that the origin of larval microbiota is from brood cell provisions. Methods We collected samples from adult females and males of C. decolorata ( n  = 10 each, n  = 20), larvae ( n  = 4), and brood cell provisions ( n  = 10). For comparison purposes, we also sampled co-occurring female foragers of social Apis mellifera ( n  = 6). The samples were dissected, their DNA extracted, and gut microbiota sequenced using 16S rRNA genes. Pollen loads of A. mellifera and C. decolorata were analyzed and interactions between bee species and their plant resources were visualized using a pollination network. Results While we found the gut of A. mellifera contained the same phylotypes previously reported in the literature, we noted that the variability in the gut microbiota of solitary C. decolorata was significantly higher than that of social A. mellifera . Furthermore, the microbiota of adult C. decolorata mostly consisted of acetic acid bacteria whereas that of A. mellifera mostly had lactic acid bacteria. Among C. decolorata , we found significant differences in alpha and beta diversity between adults and their brood cell provisions (Shannon and Chao1 p  < 0.05), due to the higher abundance of families such as Rhizobiaceae and Chitinophagaceae in the brood cells, and of Acetobacteraceae in adults. In addition, the pollination network analysis indicated that A. mellifera had a stronger interaction with Byrsonima sp. and a weaker interaction with Combretaceae while interactions between C. decolorata and its plant resources were constant with the null model. Conclusion Our data are consistent with the hypothesis that behavioral differences in brood provisioning between solitary and social bees is a factor leading to relatively high variation in the microbiota of the solitary bee. 
    more » « less