skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 11, 2026

Title: Learning Backbones: Sparsifying Graphs Through Zero Forcing for Effective Graph-Based Learning
This paper introduces a novel framework for graph sparsification that preserves the essential learning attributes of original graphs, improving computational efficiency and reducing complexity in learning algorithms. We refer to these sparse graphs as ``learning backbones.'' Our approach leverages the zero-forcing (ZF) phenomenon, a dynamic process on graphs with applications in network control. The key idea is to generate a tree from the original graph that retains critical dynamical properties. By correlating these properties with learning attributes, we construct effective learning backbones. We evaluate the performance of our ZF-based backbones in graph classification tasks across eight datasets and six baseline models. The results demonstrate that our method outperforms existing techniques. Additionally, we explore extensions using node distance metrics to further enhance the framework's utility.  more » « less
Award ID(s):
2325416 2325417
PAR ID:
10626549
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Nature Switzerland
Date Published:
ISBN:
978-3-031-82427-2
Page Range / eLocation ID:
85 to 100
Subject(s) / Keyword(s):
Sparsification Network Control Backbone Graph Neural Networks Graph Classification
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cherifi, Hocine; Donduran, Murat; Rocha, Luis; Cherifi, Chantal; Varol, Onur (Ed.)
    This paper introduces a novel framework for graph sparsification that preserves the essential learning attributes of original graphs, improving computational efficiency and reducing complexity in learning algorithms. We refer to these sparse graphs as “learning backbones.” Our approach leverages the zero-forcing (ZF) phenomenon, a dynamic process on graphs with applications in network control. The key idea is to generate a tree from the original graph that retains critical dynamical properties. By correlating these properties with learning attributes, we construct effective learning backbones. We evaluate the performance of our ZF-based backbones in graph classification tasks across eight datasets and six baseline models. The results demonstrate that our method outperforms existing techniques. Additionally, we explore extensions using node distance metrics to further enhance the framework’s utility. 
    more » « less
  2. In this paper, we study the problem of unsupervised graph representation learning by harnessing the control properties of dynamical networks defined on graphs. Our approach introduces a novel framework for contrastive learning, a widely prevalent technique for unsupervised representation learning. A crucial step in contrastive learning is the creation of ‘augmented’ graphs from the input graphs. Though different from the original graphs, these augmented graphs retain the original graph’s structural characteristics. Here, we propose a unique method for generating these augmented graphs by leveraging the control properties of networks. The core concept revolves around perturbing the original graph to create a new one while preserving the controllability properties specific to networks and graphs. Compared to the existing methods, we demonstrate that this innovative approach enhances the effectiveness of contrastive learning frameworks, leading to superior results regarding the accuracy of the classification tasks. The key innovation lies in our ability to decode the network structure using these control properties, opening new avenues for unsupervised graph representation learning. 
    more » « less
  3. In this paper, we study the problem of unsupervised graph representation learning by harnessing the control properties of dynamical networks defined on graphs. Our approach introduces a novel framework for contrastive learning, a widely prevalent technique for unsupervised representation learning. A crucial step in contrastive learning is the creation of ‘augmented’ graphs from the input graphs. Though different from the original graphs, these augmented graphs retain the original graph’s structural characteristics. Here, we propose a unique method for generating these augmented graphs by leveraging the control properties of networks. The core concept revolves around perturbing the original graph to create a new one while preserving the controllability properties specific to networks and graphs. Compared to the existing methods, we demonstrate that this innovative approach enhances the effectiveness of contrastive learning frameworks, leading to superior results regarding the accuracy of the classification tasks. The key innovation lies in our ability to decode the network structure using these control properties, opening new avenues for unsupervised graph representation learning. 
    more » « less
  4. Fair machine learning aims to mitigate the biases of model predictions against certain subpopulations regarding sensitive attributes such as race and gender. Among the many existing fairness notions, counterfactual fairness measures the model fairness from a causal perspective by comparing the predictions of each individual from the original data and the counterfactuals. In counterfactuals, the sensitive attribute values of this individual had been modified. Recently, a few works extend counterfactual fairness to graph data, but most of them neglect the following facts that can lead to biases: 1) the sensitive attributes of each node's neighbors may causally affect the prediction w.r.t. this node; 2) the sensitive attributes may causally affect other features and the graph structure. To tackle these issues, in this paper, we propose a novel fairness notion - graph counterfactual fairness, which considers the biases led by the above facts. To learn node representations towards graph counterfactual fairness, we propose a novel framework based on counterfactual data augmentation. In this framework, we generate counterfactuals corresponding to perturbations on each node's and their neighbors' sensitive attributes. Then we enforce fairness by minimizing the discrepancy between the representations learned from the original graph and the counterfactuals for each node. Experiments on both synthetic and real-world graphs show that our framework outperforms the state-of-the-art baselines in graph counterfactual fairness, and also achieves comparable prediction performance. 
    more » « less
  5. This paper studies the controllability backbone problem in dynamical networks defined over graphs. The main idea of the controllability backbone is to identify a small subset of edges in a given network such that any subnetwork containing those edges/links has at least the same network controllability as the original network while assuming the same set of input/leader vertices. We consider the strong structural controllability (SSC) in our work, which is useful but computationally challenging. Thus, we utilize two lower bounds on the network’s SSC based on the zero forcing notion and graph distances. We provide algorithms to compute controllability backbones while preserving these lower bounds. We thoroughly analyze the proposed algorithms and compute the number of edges in the controllability backbones. Finally, we compare and numerically evaluate our methods on random graphs. 
    more » « less