skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 14, 2026

Title: Resolving an Asteroseismic Catastrophe: Structural Diagnostics from p -mode Phase Functions off the Main Sequence
Abstract On the main sequence, the asteroseismic small frequency separationδν02between radial and quadrupolep-modes is customarily interpreted to be a direct diagnostic of internal structure. Such an interpretation is based on a well-known integral estimator relatingδν02to a radially averaged sound-speed gradient. However, this estimator fails, catastrophically, when evaluated on structural models of red giants: their small separations must therefore be interpreted differently. We derive a single expression that both reduces to the classical estimator when applied to main-sequence stellar models and reproduces the qualitative features of the small separation for stellar models of very evolved red giants. This expression indicates that the small separations of red giants scale primarily with their global seismic properties as δ ν 02 Δ ν 2 / ν max , rather than being in any way sensitive to their internal structure. Departures from this asymptotic behavior, during the transition from the main-sequence to red giant regimes, have been recently reported in open-cluster Christensen–Dalsgaard (C-D) diagrams from K2 mission data. Investigating them in detail, we demonstrate that they occur when the convective envelope boundary passes a specific acoustic distance—roughly one-third of a wavelength at ν max —from the center of the star, at which point radial modes become maximally sensitive to the position of the boundary. The shape of the corresponding features onϵpand C-D (orr02) diagrams may be useful in constraining the nature of convective boundary mixing in the context of undershooting beneath a convective envelope.  more » « less
Award ID(s):
2205026
PAR ID:
10626610
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
980
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
199
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a detection of 21 cm emission from large-scale structure (LSS) between redshift 0.78 and 1.43 made with the Canadian Hydrogen Intensity Mapping Experiment. Radio observations acquired over 102 nights are used to construct maps that are foreground filtered and stacked on the angular and spectral locations of luminous red galaxies (LRGs), emission-line galaxies (ELGs), and quasars (QSOs) from the eBOSS clustering catalogs. We find decisive evidence for a detection when stacking on all three tracers of LSS, with the logarithm of the Bayes factor equal to 18.9 (LRG), 10.8 (ELG), and 56.3 (QSO). An alternative frequentist interpretation, based on the likelihood ratio test, yields a detection significance of 7.1σ(LRG), 5.7σ(ELG), and 11.1σ(QSO). These are the first 21 cm intensity mapping measurements made with an interferometer. We constrain the effective clustering amplitude of neutral hydrogen (Hi), defined as H I 10 3 Ω H I b H I + f μ 2 , where ΩHiis the cosmic abundance of Hi,bHiis the linear bias of Hi, and 〈fμ2〉 = 0.552 encodes the effect of redshift-space distortions at linear order. We find H I = 1.51 0.97 + 3.60 for LRGs (z= 0.84), H I = 6.76 3.79 + 9.04 for ELGs (z= 0.96), and H I = 1.68 0.67 + 1.10 for QSOs (z= 1.20), with constraints limited by modeling uncertainties at nonlinear scales. We are also sensitive to bias in the spectroscopic redshifts of each tracer, and we find a nonzero bias Δv= − 66 ± 20 km s−1for the QSOs. We split the QSO catalog into three redshift bins and have a decisive detection in each, with the upper bin atz= 1.30 producing the highest-redshift 21 cm intensity mapping measurement thus far. 
    more » « less
  2. Abstract The Makani galaxy hosts the poster child of a galactic wind on scales of the circumgalactic medium. It consists of a two-episode wind in which the slow, outer wind originated 400 Myr ago (Episode I;RI= 20 − 50 kpc) and the fast, inner wind is 7 Myr old (Episode II;RII= 0 − 20 kpc). While this wind contains ionized, neutral, and molecular gas, the physical state and mass of the most extended phase—the warm, ionized gas—are unknown. Here we present Keck optical spectra of the Makani outflow. These allow us to detect hydrogen lines out tor= 30–40 kpc and thus constrain the mass, momentum, and energy in the wind. Many collisionally excited lines are detected throughout the wind, and their line ratios are consistent with 200–400 km s−1shocks that power the ionized gas, withvshockwind. Combining shock models, density-sensitive line ratios, and mass and velocity measurements, we estimate that the ionized mass and outflow rate in the Episode II wind could be as high as those of the molecular gas: M II H II M II H 2 = ( 1 2 ) × 10 9 M and dM / dt II H II dM / dt II H 2 = 170 250 M yr−1. The outer wind has slowed, so that dM / dt I H II 10 M yr−1, but it contains more ionized gas, M I H II = 5 × 10 9 M. The momentum and energy in the recent Episode II wind imply a momentum-driven flow (p“boost” ∼7) driven by the hot ejecta and radiation pressure from the Eddington-limited, compact starburst. Much of the energy and momentum in the older Episode I wind may reside in a hotter phase, or lie further into the circumgalactic medium. 
    more » « less
  3. Abstract We present the KODIAQ-Z survey aimed to characterize the cool, photoionized gas at 2.2 ≲z≲ 3.6 in 202 Hi-selected absorbers with 14.6 ≤ log N H I < 20 that probe the interface between galaxies and the intergalactic medium (IGM). We find that gas with 14.6 log N H I < 20 at 2.2 ≲z≲ 3.6 can be metal-rich (−1.6 ≲ [X/H] ≲ − 0.2) as seen in damped Lyαabsorbers (DLAs); it can also be very metal-poor ([X/H] < − 2.4) or even pristine ([X/H] < − 3.8), which is not observed in DLAs but is common in the IGM. For 16 < log N H I < 20 absorbers, the frequency of pristine absorbers is about 1%–10%, while for 14.6 log N H I 16 absorbers it is 10%–20%, similar to the diffuse IGM. Supersolar gas is extremely rare (<1%) at these redshifts. The factor of several thousand spread from the lowest to highest metallicities and large metallicity variations (a factor of a few to >100) between absorbers separated by less than Δv< 500 km s−1imply that the metals are poorly mixed in 14.6 log N H I < 20 gas. We show that these photoionized absorbers contribute to about 14% of the cosmic baryons and 45% of the cosmic metals at 2.2 ≲z≲ 3.6. We find that the mean metallicity increases withNHi, consistent with what is found inz< 1 gas. The metallicity of gas in this column density regime has increased by a factor ∼8 from 2.2 ≲z≲ 3.6 toz< 1, but the contribution of the 14.6 log N H I < 19 absorbers to the total metal budget of the universe atz< 1 is a quarter of that at 2.2 ≲z≲ 3.6. We show that FOGGIE cosmological zoom-in simulations have a similar evolution of [X/H] withNHi, which is not observed in lower-resolution simulations. In these simulations, very metal-poor absorbers with [X/H] < − 2.4 atz∼ 2–3 are tracers of inflows, while higher-metallicity absorbers are a mixture of inflows and outflows. 
    more » « less
  4. Abstract Cosmic reionization was the last major phase transition of hydrogen from neutral to highly ionized in the intergalactic medium (IGM). Current observations show that the IGM is significantly neutral atz> 7 and largely ionized byz∼ 5.5. However, most methods to measure the IGM neutral fraction are highly model dependent and are limited to when the volume-averaged neutral fraction of the IGM is either relatively low ( x ¯ H I 10 3 ) or close to unity ( x ¯ H I 1 ). In particular, the neutral fraction evolution of the IGM at the critical redshift range ofz= 6–7 is poorly constrained. We present new constraints on x ¯ H I atz∼ 5.1–6.8 by analyzing deep optical spectra of 53 quasars at 5.73 <z< 7.09. We derive model-independent upper limits on the neutral hydrogen fraction based on the fraction of “dark” pixels identified in the Lyαand Lyβforests, without any assumptions on the IGM model or the intrinsic shape of the quasar continuum. They are the first model-independent constraints on the IGM neutral hydrogen fraction atz∼ 6.2–6.8 using quasar absorption measurements. Our results give upper limits of x ¯ H I ( z = 6.3 ) < 0.79 ± 0.04 (1σ), x ¯ H I ( z = 6.5 ) < 0.87 ± 0.03 (1σ), and x ¯ H I ( z = 6.7 ) < 0.94 0.09 + 0.06 (1σ). The dark pixel fractions atz> 6.1 are consistent with the redshift evolution of the neutral fraction of the IGM derived from Planck 2018. 
    more » « less
  5. Abstract We present a survey of 1D kinetic particle-in-cell simulations of quasi-parallel nonrelativistic shocks to identify the environments favorable for electron acceleration. We explore an unprecedented range of shock speedsvsh≈ 0.067–0.267c, Alfvén Mach numbers M A = 5 40 , sonic Mach numbers M s = 5 160 , as well as the proton-to-electron mass ratiosmi/me= 16–1836. We find that high Alfvén Mach number shocks can channel a large fraction of their kinetic energy into nonthermal particles, self-sustaining magnetic turbulence and acceleration to larger and larger energies. The fraction of injected particles is ≲0.5% for electrons and ≈1% for protons, and the corresponding energy efficiencies are ≲2% and ≈10%, respectively. The extent of the nonthermal tail is sensitive to the Alfvén Mach number; when M A 10 , the nonthermal electron distribution exhibits minimal growth beyond the average momentum of the downstream thermal protons, independently of the proton-to-electron mass ratio. Acceleration is slow for shocks with low sonic Mach numbers, yet nonthermal electrons still achieve momenta exceeding the downstream thermal proton momentum when the shock Alfvén Mach number is large enough. We provide simulation-based parameterizations of the transition from thermal to nonthermal distribution in the downstream (found at a momentum around p i , e / m i v sh 3 m i , e / m i ), as well as the ratio of nonthermal electron to proton number density. The results are applicable to many different environments and are important for modeling shock-powered nonthermal radiation. 
    more » « less