skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving access to undergraduate research using digitized natural history collections course‐based research experiences
Abstract Course‐based undergraduate research experiences (CUREs) can be a powerful tool in broadening participation in undergraduate research. In this paper, we review the benefits of and barriers to undergraduate research experiences and explore how CUREs can mitigate some of those issues. As a part of the NSF‐supported Biological Collections in Ecology and Evolution Network (BCEENET) activities, a series of network meetings produced a set of recommendations to increase the accessibility of CUREs for all students at all institution types. We use BCEENET CUREs that focus on digitized natural history collections data to illustrate how leveraging adaptable open educational resources that use freely available data and analysis tools can increase accessibility of undergraduate research. We also discuss how inclusive networks of educators and research collaborators can support broadening CURE implementation.  more » « less
Award ID(s):
2120063
PAR ID:
10626705
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley Online Library
Date Published:
Journal Name:
Ecosphere
Volume:
15
Issue:
11
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. AbstractCourse-based Undergraduate Research Experiences (CUREs) bring the excitement of research into the classroom to improve learning and the sense of belonging in the field. They can reach more students, earlier in their studies, than typical undergraduate research. Key aspects are: students learn and use research methods, give input into the project, generate new research data, and analyze it to draw conclusions that are not known beforehand. CUREs are common in other fields but have been rare in materials science and engineering. I propose a paradigm for computational material science CUREs, enabled by web-based simulation tools from nanoHUB.org that require minimal computational skills. After preparatory exercises, students each calculate part of a set of closely related materials, following a defined protocol to contribute to a novel class dataset which they analyze, and also calculate an additional property of their choice. This approach has been used successfully in several class projects. Graphical abstract 
    more » « less
  2. null (Ed.)
    ABSTRACT Undergraduate research plays an important role in the development of science students. The two most common forms of undergraduate research are those in traditional settings (such as internships and research-for-credit in academic research labs) and course-based undergraduate research experiences (CUREs). Both of these settings offer many benefits to students, yet they have unique strengths and weaknesses that lead to trade-offs. Traditional undergraduate research experiences (UREs) offer the benefits of personalized mentorship and experience in a professional setting, which help build students’ professional communication skills, interest, and scientific identity. However, UREs can reach only a limited number of students. On the other end of the trade-off, CUREs offer research authenticity in a many-to-one classroom research environment that reaches more students. CUREs provide real research experience in a collaborative context, but CUREs are not yet necessarily equipping students with all of the experiences needed to transition into a research lab environment outside the classroom. We propose that CURE instructors can bridge trade-offs between UREs and CUREs by deliberately including learning goals and activities in CUREs that recreate the benefits of UREs, specifically in the areas of professional communication, scientific identify, and student interest. To help instructors implement this approach, we provide experience- and evidence-based guidance for student-centered, collaborative learning opportunities. 
    more » « less
  3. Provost, Joseph; Cornely, Kathleen; Parente, Amy; Peterson, Celeste; Springer, Amy (Ed.)
    Abstract College science programs exhibit high rates of student attrition, especially among Students of Color, women, members of the LGBTQ+ community, and those with disabilities. Many of the reasons students choose to leave or feel pushed out of science can be mitigated through participation in faculty-mentored research. However, faculty resources are limited, and not every student has access to faculty mentoring due to systemic or structural barriers. By bringing authentic scientific research into the classroom context, course-based undergraduate research experiences (CUREs) expand the number of students who participate in research and provide benefits similar to faculty-mentored research. Instructors also benefit from teaching CUREs. Using a systematic review of 14 manuscripts concerning the Malate Dehydrogenase CUREs Community (MCC) and malate dehydrogenase (MDH) CUREs, we demonstrate that CUREs can be implemented flexibly, are authentic research experiences, generate new scientific discoveries, and improve student outcomes. Additionally, CURE communities offer substantial advantages to faculty wishing to implement CUREs. 
    more » « less
  4. Advancement of the scientific enterprise relies on individuals conducting research in an ethical and responsible manner. Educating emergent scholars in the principles of ethics/responsible conduct of research (E/RCR) is therefore critical to ensuring such advancement. The recent impetus to include authentic research opportunities as part of the undergraduate curriculum, via course-based undergraduate research experiences (CUREs), has been shown to increase cognitive and noncognitive student outcomes. Because of these important benefits, CUREs are becoming more common and often constitute the first research experience for many students. However, despite the importance of E/RCR in the research process, we know of few efforts to incorporate E/RCR education into CUREs. The Ethics Network for Course-based Opportunities in Undergraduate Research (ENCOUR) was created to address this concern and promote the integration of E/RCR within CUREs in the biological sciences and related disciplines. During the inaugural ENCOUR meeting, a four-pronged approach was used to develop guidelines for the effective integration of E/RCR in CUREs. This approach included: 1) defining appropriate student learning objectives; 2) identifying relevant curriculum; 3) identifying relevant assessments; and 4) defining key aspects of professional development for CURE facilitators. Meeting outcomes, including the aforementioned E/RCR guidelines, are described herein. 
    more » « less
  5. ABSTRACT Course-based undergraduate research experiences (CUREs) are increasingly becoming the first, and perhaps only, research experience for many biology students. Responsible and ethical conduct of research (RECR) is crucial for the integrity of scientific research and essential for students to have an understanding of the scientific process at any academic level. However, there is a current lack of RECR education in biology CUREs. To understand the level of RECR knowledge and skills in undergraduate students, we created a diagnostic survey that uses case scenarios designed to illustrate RECR issues in the CURE classroom. Analysis of students’ responses indicated that the overall percentage of students who are able to effectively use RECR terminology and identify the impact of RECR violations on science integrity and ultimately on society is low. Furthermore, some students equated RECR violations to academic dishonesty, indicating difficulties separating the research and academic aspects of CUREs. This diagnostic tool can aid instructors in identifying gaps in student RECR knowledge for the subsequent development of RECR educational interventions, particularly to ensure the integrity of the research performed in CURE settings. 
    more » « less