skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 14, 2026

Title: High levels of type II Fusarium head blight resistance conferred in wheat by combining wheat gene Fhb1 with Lophopyrum elongatum gene Fhb7The2 
Award ID(s):
2102953
PAR ID:
10626807
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Czech Academy of Agricultural Sciences
Date Published:
Journal Name:
Czech Journal of Genetics and Plant Breeding
Volume:
61
Issue:
1
ISSN:
1212-1975
Page Range / eLocation ID:
31 to 42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Genetic diversity found in crop wild relatives is critical to preserve and utilize for crop improvement to achieve sustainable food production amid climate change and increased demand. We genetically characterized a large collection of 1,041Aegilopsaccessions distributed among 23 different species using more than 45K single nucleotide polymorphisms identified by genotyping-by-sequencing. The Wheat Genetics Resource Center (WGRC)Aegilopsgermplasm collection was curated through the identification of misclassified and redundant accessions. There were 49 misclassified and 28 sets of redundant accessions within the four diploid species. The curated germplasm sets now have improved utility for genetic studies and wheat improvement. We constructed a phylogenetic tree and principal component analysis cluster for allAegilopsspecies together, giving one of the most comprehensive views ofAegilops. TheSitopsissection and the U genomeAegilopsclade were further scrutinized with in-depth population analysis. The genetic relatedness among the pair ofAegilopsspecies provided strong evidence for the species evolution, speciation, and diversification. We inferred genome symbols for two speciesAe.neglectaandAe.columnarisbased on the sequence read mapping and the presence of segregating loci on the pertinent genomes as well as genetic clustering. The high genetic diversity observed amongAegilopsspecies indicated that the genus could play an even greater role in providing the critical need for untapped genetic diversity for future wheat breeding and improvement. To fully characterize theseAegilopsspecies, there is an urgent need to generate reference assemblies for these wild wheats, especially for the polyploidAegilops. 
    more » « less
  2. Genetic diversity found in crop wild relatives is critical to preserve and utilize for crop improvement to achieve sustainable food production amid climate change and increased demand. We genetically characterized a large collection of 1,041Aegilopsaccessions distributed among 23 different species using more than 45K single nucleotide polymorphisms identified by genotyping-by-sequencing. The Wheat Genetics Resource Center (WGRC)Aegilopsgermplasm collection was curated through the identification of misclassified and redundant accessions. There were 49 misclassified and 28 sets of redundant accessions within the four diploid species. The curated germplasm sets now have improved utility for genetic studies and wheat improvement. We constructed a phylogenetic tree and principal component analysis cluster for allAegilopsspecies together, giving one of the most comprehensive views ofAegilops. TheSitopsissection and the U genomeAegilopsclade were further scrutinized with in-depth population analysis. The genetic relatedness among the pair ofAegilopsspecies provided strong evidence for the species evolution, speciation, and diversification. We inferred genome symbols for two speciesAe.neglectaandAe.columnarisbased on the sequence read mapping and the presence of segregating loci on the pertinent genomes as well as genetic clustering. The high genetic diversity observed amongAegilopsspecies indicated that the genus could play an even greater role in providing the critical need for untapped genetic diversity for future wheat breeding and improvement. To fully characterize theseAegilopsspecies, there is an urgent need to generate reference assemblies for these wild wheats, especially for the polyploidAegilops. 
    more » « less
  3. Bread wheat (Triticum aestivum) is a major food crop and an important plant system for agricultural genetics research. However, due to the complexity and size of its allohexaploid genome, genomic resources are limited compared to other major crops. The IWGSC recently published a reference genome and associated annotation (IWGSC CS v1.0, Chinese Spring) that has been widely adopted and utilized by the wheat community. Although this reference assembly represents all three wheat subgenomes at chromosome-scale, it was derived from short reads, and thus is missing a substantial portion of the expected 16 Gbp of genomic sequence. We earlier published an independent wheat assembly (Triticum_aestivum_3.1, Chinese Spring) that came much closer in length to the expected genome size, although it was only a contig-level assembly lacking gene annotations. Here, we describe a reference-guided effort to scaffold those contigs into chromosome-length pseudomolecules, add in any missing sequence that was unique to the IWGSC CS v1.0 assembly, and annotate the resulting pseudomolecules with genes. Our updated assembly, Triticum_aestivum_4.0, contains 15.07 Gbp of non-gap sequence anchored to chromosomes, which is 1.2 Gbps more than the previous reference assembly. It includes 108,639 genes unambiguously localized to chromosomes, including over 2,000 genes that were previously unplaced. We also discovered more than 5,700 additional gene copies, facilitating the accurate annotation of functional gene duplications including at the Ppd-B1 photoperiod response locus. 
    more » « less