ABSTRACT We previously developed and assessed “The Art of Microbiology,” a course-based undergraduate research experience (CURE) which uses agar art to spur student experimentation, where we found student outcomes related to science persistence. However, these outcomes were not correlated with specific activities and gains were not reported from more than one class. In this study, we explored which of the three major activities in this CURE—agar art, experimental design, or poster presentations—affected student engagement and outcomes associated with improved understanding of the nature of science (NOS). The Art of Microbiology was studied in three microbiology teaching laboratories: at a research university with either the CURE developer (18 students) or a CURE implementer (39 students) and at a community college with a CURE implementer (25 students). Our quasi-experimental mixed methods study used pre/post-NOS surveys and semi-structured class-wide interviews. Community college students had lower baseline NOS responses but had gains in NOS similar to research university students post-CURE. We surveyed research university students following each major activity using the Assessing Student Perspective of Engagement in Class Tool (ASPECT) survey but did not find a correlation between NOS and activity engagement. Of the three activities, we found the highest engagement with agar art, especially in the CURE developer class. Interviewed students in all classes described agar art as a fun, relevant, and low-stakes assignment. This work contributes to the evidence supporting agar art as a curricular tool, especially in ways that can add research to classrooms in and beyond the research university.
more »
« less
This content will become publicly available on June 1, 2026
ADOPTING A FOUNDATIONAL DATA SCIENCE COURSE: A FOLLOW-UP EVALUATION
To broaden participation and diversity in data science, educators are increasingly leveraging the adaptation and sharing of successful course models. This paper presents our experience implementing a foundational data science course, adapted from the University of California, Berkeley's Data 8 Foundations of Data Science, at Northeastern University's Oakland Campus in Spring 2024. A key objective was to cultivate student engagement and demonstrate the relevance of data science across disciplines. We assessed the impact of this adaptation on a cohort of first-year students, all non-data-science majors with limited prior programming or statistical experience. Our evaluation focused on student engagement, academic trajectory, and the course's ability to spark sustained interest in data science. The results demonstrate a significant positive impact: 44% of students declared a major in data science or a combined major (e.g., data science and business or economics), 16% pursued a minor in data science, and 16% transitioned to computer science. These outcomes emphasize the importance of designing introductory data science curricula to serve diverse student populations. By incorporating real-world applications from health, economics, social sciences, entertainment, sports, and finance, students gained a deeper understanding of the field's potential and their own capacity to contribute. Furthermore, smaller class sizes promoted interactive learning and personalized assignments, creating a more engaging and accessible educational experience. This approach effectively strengthens students' comprehension of data science pathways and cultivates motivation, ultimately contributing to a more inclusive and diverse data science workforce.
more »
« less
- Award ID(s):
- 1915714
- PAR ID:
- 10626812
- Editor(s):
- na
- Publisher / Repository:
- IATED Digital Library
- Date Published:
- Edition / Version:
- 1
- Volume:
- 2025
- ISSN:
- 0000-0000
- ISBN:
- 978-84-09-74218-9
- Page Range / eLocation ID:
- 7867-7867
- Subject(s) / Keyword(s):
- Data science, adoption, education.
- Format(s):
- Medium: X
- Location:
- Palma, Spain
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wang, Jack (Ed.)The Fly-CURE is a genetics-focused multi-institutional Course-Based Undergraduate Research Experience (CURE) that provides undergraduate students with hands-on research experiences within a course. Through the Fly-CURE, undergraduate students at diverse types of higher education institutions across the United States map and characterize novel mutants isolated from a genetic screen in Drosophila melanogaster . To date, more than 20 mutants have been studied across 20 institutions, and our scientific data have led to eleven publications with more than 500 students as authors. To evaluate the impact of the Fly-CURE experience on students, we developed and validated assessment tools to identify students’ perceived research self-efficacy, sense of belonging in science, and intent to pursue additional research opportunities. Our data, collected over three academic years and involving 14 institutions and 480 students, show gains in these metrics after completion of the Fly-CURE across all student subgroups analyzed, including comparisons of gender, academic status, racial and ethnic groups, and parents’ educational background. Importantly, our data also show differential gains in the areas of self-efficacy and interest in seeking additional research opportunities between Fly-CURE students with and without prior research experience, illustrating the positive impact of research exposure (dosage) on student outcomes. Altogether, our data indicate that the Fly-CURE experience has a significant impact on students’ efficacy with research methods, sense of belonging to the scientific research community, and interest in pursuing additional research experiences.more » « less
-
We seek to increase student engagement and success to subsequently lead to increased retention and degree attainment for students at our Hispanic-serving institution. We hypothesized that using a culturally responsive approach in an undergraduate microbiology lab would increase engagement and learning gains. Using a culturally responsive approach allowed students to start their learning from their own place of understanding—centering students’ lived experiences. Students interviewed family members to learn about “home remedies,” and then devised experiments to test whether those home remedies affected growth of bacteria commonly implicated in gastrointestinal distress (Staphylococcus aureus, Bacillus cereus, and Escherichia coli) or sore throat (Neisseria gonorrhoeae, Streptococcus pyogenes, and Mycoplasma pneumoniae). As a final assessment, students generated project posters which they presented at a class symposium. Implementation of a culturally responsive research experience focused on the gut microbiome resulted in increased learning gains as evidenced by movement up Bloom’s Revised Taxonomy Scale. Student feedback indicated increased engagement, increased confidence in communicating science and a deeper understanding and appreciation for microbiology. Taken together, the results indicate that students appreciate a more culturally responsive and student-centered approach to learning in microbiology and encourages expansion of this approach to other modules in the course. This paper includes responsive data to support this claim, as well as a sample course calendar and supplementary learning material to support the human microbiome approach to microbiologymore » « less
-
Climate change is a major concern to undergraduate students. Understanding climate change relies on an understanding of polar regions. However, courses on polar regions are rare at undergraduate institutions. Polar ENgagement through GUided INquiry (PENGUIN) modules were designed to give students experience with polar research in a variety of standard courses, including physics, computer science, physical chemistry, and economics, through using course-specific and computational tools to analyze polar data. Here, we present a new PENGUIN module taught in a statistics class, in which students apply statistical tools to ice core data to reconstruct past temperature records. Quantitative student responses on pre- and post-surveys were collected in a quasi-experimental context to assess student knowledge gains for a test group of 91 students and a control group of 73 students (who did not complete the module). Test-group students made statistically significant increases of 25 to 46% on all six statistics questions, with a normalized gain of 56%. By contrast, control group statistics knowledge gains ranged from −4 to 25%, with statistically significant increases for only three questions and a normalized gain of 22%. For polar research questions, the test group demonstrated increases in correct responses to polar research questions (11 to 31%), with statistically significant improvements (p < .05) of 22-31% on 3 of 6 polar research questions. These findings support the conclusion that PENGUIN modules can successfully teach course concepts while increasing polar literacy.more » « less
-
This experience report is part of an ongoing NSF-funded grant project involving an alliance of six California State University campuses, aimed at promoting Latinx student retention through community engagement in early computer science courses. The project focuses on integrating socially responsible computing (SRC) into the curriculum to transform computing culture and invite marginalized students to participate. At our campus, we integrated SRC concepts into the CS2 course on Data Structures and Algorithms. Initially, SRC concepts were introduced into assignments and projects, which showed promising results but highlighted challenges: the assignments and projects were instructor-created, leading to a gap between students and the concepts. Students passively received topics without proactive participation, resulting in a lack of perceived real-world impact. To address this, we involved the local Latinx community directly. Students visited community partners to identify real-world problems, which they then addressed through term projects, ultimately presenting their solutions to the community. Adopting a startup mindset, students interviewed partners, identified problems, developed prototypes, and delivered solutions. This hands-on approach, first implemented in Spring 2024, significantly enhanced student engagement and provided practical, impactful learning experiences. This report details the course design, implementation process, formative data collected, and reflections on the outcomes. The findings offer valuable insights and recommendations for educators aiming to foster community engagement and socially responsible computing in computer science education, with a specific focus on promoting Latinx student retention.more » « less
An official website of the United States government
