Clustering is a fundamental task in machine learning. One of the most successful and broadly used algorithms is DBSCAN, a density-based clustering algorithm. DBSCAN requires ϵ-nearest neighbor graphs of the input dataset, which are computed with range-search algorithms and spatial data structures like KD-trees. Despite many efforts to design scalable implementations for DBSCAN, existing work is limited to low-dimensional datasets, as constructing ϵ-nearest neighbor graphs can be expensive in high-dimensions. This article introduces a modified DBSCAN, usingk-nearest neighbor (kNN) graphs to improve efficiency. We outline conditions forkNN-DBSCAN to match DBSCAN’s results and present a parallel implementation using OpenMP and MPI for shared and distributed memory systems. Testing on datasets up to 32 dimensions, we achieve remarkable scalability. Our implementation clusters one billion 3D points in under one second on 28K cores at TACC’s Frontera system. In a larger run, we cluster 65 billion points in 20 dimensions in under 40 seconds using 114,688 cores. Our method is up to 37× faster than state-of-the-art parallel DBSCAN on a 20-dimensional dataset with 4 million points. Code is available athttps://github.com/ut-padas/knndbscan.
more »
« less
Efficient Centroid-Linkage Clustering
We give an algorithm for Centroid-Linkage Hierarchical Agglomerative Clustering (HAC), which computes a $$c$$-approximate clustering in roughly $$n^{1+O(1/c^2)}$$ time. We obtain our result by combining a new Centroid-Linkage HAC algorithm with a novel fully dynamic data structure for nearest neighbor search which works under adaptive updates. We also evaluate our algorithm empirically. By leveraging a state-of-the-art nearest-neighbor search library, we obtain a fast and accurate Centroid-Linkage HAC algorithm. Compared to an existing state-of-the-art exact baseline, our implementation maintains the clustering quality while delivering up to a $$36\times$$ speedup due to performing fewer distance comparisons.
more »
« less
- Award ID(s):
- 2403236
- PAR ID:
- 10627074
- Publisher / Repository:
- NeurIPS 2024
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)Average linkage Hierarchical Agglomerative Clustering (HAC) is an extensively studied and applied method for hierarchical clustering. Recent applications to massive datasets have driven significant interest in near-linear-time and efficient parallel algorithms for average linkage HAC. We provide hardness results that rule out such algorithms. On the sequential side, we establish a runtime lower bound of n^{3/2-ε} on n node graphs for sequential combinatorial algorithms under standard fine-grained complexity assumptions. This essentially matches the best-known running time for average linkage HAC. On the parallel side, we prove that average linkage HAC likely cannot be parallelized even on simple graphs by showing that it is CC-hard on trees of diameter 4. On the possibility side, we demonstrate that average linkage HAC can be efficiently parallelized (i.e., it is in NC) on paths and can be solved in near-linear time when the height of the output cluster hierarchy is small.more » « less
-
null (Ed.)We present the first sublinear memory sketch that can be queried to find the nearest neighbors in a dataset. Our online sketching algorithm compresses an N element dataset to a sketch of size 𝑂(𝑁𝑏log3𝑁) in 𝑂(𝑁(𝑏+1)log3𝑁) time, where 𝑏<1. This sketch can correctly report the nearest neighbors of any query that satisfies a stability condition parameterized by 𝑏. We achieve sublinear memory performance on stable queries by combining recent advances in locality sensitive hash (LSH)-based estimators, online kernel density estimation, and compressed sensing. Our theoretical results shed new light on the memory-accuracy tradeoff for nearest neighbor search, and our sketch, which consists entirely of short integer arrays, has a variety of attractive features in practice. We evaluate the memory-recall tradeoff of our method on a friend recommendation task in the Google plus social media network. We obtain orders of magnitude better compression than the random projection based alternative while retaining the ability to report the nearest neighbors of practical queries.more » « less
-
Hierarchical clustering is a fundamental tool in data mining, machine learning and statistics. Popular hierarchical clustering algorithms include top-down divisive approaches such as bisecting k-means, k-median, and k-center and bottom-up agglomerative approaches such as single- linkage, average-linkage, and centroid-linkage. Unfortunately, only a few scalable hierarchical clustering algorithms are known, mostly based on the single-linkage algorithm. So, as datasets increase in size every day, there is a pressing need to scale other popular methods. We introduce efficient distributed algorithms for bisecting k-means, k- median, and k-center as well as centroid-linkage. In particular, we first formalize a notion of closeness for a hierarchical clustering algorithm, and then we use this notion to design new scalable distributed methods with strong worst case bounds on the running time and the quality of the solutions. Finally, we show experimentally that the introduced algorithms are efficient and close to their sequential variants in practice.more » « less
-
Semidefinite programming (SDP) is a powerful tool for tackling a wide range of computationally hard problems such as clustering. Despite the high accuracy, semidefinite programs are often too slow in practice with poor scalability on large (or even moderate) datasets. In this paper, we introduce a linear time complexity algorithm for approximating an SDP relaxed K-means clustering. The proposed sketch-and-lift (SL) approach solves an SDP on a subsampled dataset and then propagates the solution to all data points by a nearest-centroid rounding procedure. It is shown that the SL approach enjoys a similar exact recovery threshold as the K-means SDP on the full dataset, which is known to be information-theoretically tight under the Gaussian mixture model. The SL method can be made adaptive with enhanced theoretic properties when the cluster sizes are unbalanced. Our simulation experiments demonstrate that the statistical accuracy of the proposed method outperforms state-of-the-art fast clustering algorithms without sacrificing too much computational efficiency, and is comparable to the original K-means SDP with substantially reduced runtime.more » « less
An official website of the United States government

