skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Simultaneous Prediction of Multiple Unmeasured Muscle Activations Through Synergy Extrapolation
Abstract Estimating muscle forces is crucial for understanding joint dynamics and improving rehabilitation strategies, particularly for patients with neurological disorders who suffer from impaired muscle function. Muscle forces are directly proportional to muscle activations, which can be obtained using electromyography (EMG). EMG-driven modeling estimates muscle forces and joint moments from muscle activations. While surface muscles' activations can be obtained using surface electrodes, deep muscles require invasive methods and are not readily available for real-time applications. This study aims to extend our previously developed method for a single unmeasured muscle to a comprehensive approach for the simultaneous prediction of multiple unmeasured muscle activations in the upper extremity using muscle synergy extrapolation and EMG-driven modeling. By employing non-negative matrix factorization to decompose known EMG data into synergy components, the activations of unmeasured muscles are reconstructed with high accuracy by minimizing differences between joint moments obtained by EMG-driven modeling and inverse dynamics. This methodology is validated through experimentally collected muscle activations, demonstrating over 90% correlation with EMG signals in various scenarios.  more » « less
Award ID(s):
2014278
PAR ID:
10627123
Author(s) / Creator(s):
;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Biomechanical Engineering
Volume:
147
Issue:
3
ISSN:
0148-0731
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Patients with neuromuscular disease fail to produce necessary muscle force and have trouble maintaining joint moment required to perform activities of daily living. Measuring muscle force values in patients with neuromuscular disease is important but challenging. Electromyography (EMG) can be used to obtain muscle activation values, which can be converted to muscle forces and joint torques. Surface electrodes can measure activations of superficial muscles, but fine-wire electrodes are needed for deep muscles, although it is invasive and require skilled personnel and preparation time. EMG-driven modeling with surface electrodes alone could underestimate the net torque. In this research, authors propose a methodology to predict muscle activations from deeper muscles of the upper extremity. This method finds missing muscle activation one at a time by combining an EMG-driven musculoskeletal model and muscle synergies. This method tracks inverse dynamics joint moments to determine synergy vector weights and predict muscle activation of selected shoulder and elbow muscles of a healthy subject. In addition, muscle-tendon parameter values (optimal fiber length, tendon slack length, and maximum isometric force) have been personalized to the experimental subject. The methodology is tested for a wide range of rehabilitation tasks of the upper extremity across multiple healthy subjects. Results show this methodology can determine single unmeasured muscle activation up to Pearson's correlation coefficient (R) of 0.99 (root mean squared error, RMSE = 0.001) and 0.92 (RMSE = 0.13) for the elbow and shoulder muscles, respectively, for one degree-of-freedom (DoF) tasks. For more complicated five DoF tasks, activation prediction accuracy can reach up to R = 0.71 (RMSE = 0.29). 
    more » « less
  2. Abstract Cerebrovascular accidents like a stroke can affect the lower limb as well as upper extremity joints (i.e., shoulder, elbow, or wrist) and hinder the ability to produce necessary torque for activities of daily living. In such cases, muscles’ ability to generate forces reduces, thus affecting the joint’s torque production. Understanding how muscles generate forces is a key element to injury detection. Researchers have developed several computational methods to obtain muscle forces and joint torques. Electromyography (EMG) driven modeling is one of the approaches to estimate muscle forces and obtain joint torques from muscle activity measurements. Musculoskeletal models and EMG-driven models require necessary muscle-specific parameters for the calculation. The focus of this study is to investigate the EMG-driven approach along with an upper extremity musculoskeletal model to determine muscle forces of two major muscle groups, biceps brachii and triceps brachii, consisting of seven muscle-tendon units. Estimated muscle forces are used to determine the elbow joint torque. Experimental EMG signals and motion capture data are collected for a healthy subject. The musculoskeletal model is scaled to match the geometric parameters of the subject. Then, the approach calculates muscle forces and joint moment for two tasks: simple elbow flexion extension and triceps kickback. Individual muscle forces and net joint torques for both tasks are estimated. The study also has compared the effect of muscle-tendon parameters (optimal fiber length and tendon slack length) on the estimated results. 
    more » « less
  3. null (Ed.)
    Abstract The domestic dog is interesting to investigate because of the wide range of body size, body mass, and physique in the many breeds. In the last several years, the number of clinical and biomechanical studies on dog locomotion has increased. However, the relationship between body structure and joint load during locomotion, as well as between joint load and degenerative diseases of the locomotor system (e.g. dysplasia), are not sufficiently understood. Collecting this data through in vivo measurements/records of joint forces and loads on deep/small muscles is complex, invasive, and sometimes unethical. The use of detailed musculoskeletal models may help fill the knowledge gap. We describe here the methods we used to create a detailed musculoskeletal model with 84 degrees of freedom and 134 muscles. Our model has three key-features: three-dimensionality, scalability, and modularity. We tested the validity of the model by identifying forelimb muscle synergies of a walking Beagle. We used inverse dynamics and static optimization to estimate muscle activations based on experimental data. We identified three muscle synergy groups by using hierarchical clustering. The activation patterns predicted from the model exhibit good agreement with experimental data for most of the forelimb muscles. We expect that our model will speed up the analysis of how body size, physique, agility, and disease influence neuronal control and joint loading in dog locomotion. 
    more » « less
  4. Muscle weakness and loss of independent joint control are the 2 most common neuromotor impairments after stroke. While there are a number of approaches to improve poststroke muscle weakness, there are currently no rehabilitation strategies that directly target a patient’s inability to match and independently activate the normal patterned muscle coordination strategies, or “muscle synergies.” Our goal is to develop an EMG-based controller for retraining healthy muscle synergies in patients with stroke-related disabilities. The controller can be integrated into rehabilitation robots for their ability to structure the robot’s force output based on input EMG activity. However, developing such a controller would require a clear understanding of the relationship between the applied force from a rehabilitation robot and the resulting changes to a patient’s muscle synergies. Therefore, this study was performed to quantify how the muscle synergies of horizontal planar-reaching are affected by direction of an applied force at the end-effector (ie, hand). A 2 DOF, 10 muscle model was developed in MATLAB using parameters obtained from the OpenSim (version 3.3) open source software system. Simulation experiments were then performed in MATLAB to investigate the relationship between the applied force and the resulting muscle synergies. The simulated event was composed of several trials of the same righthanded, planar, multidirectional reaching task from 0° (to the right) to 360°. Each trial applied a different steering force direction at the subject’s hand, varying from −45° to 45° relative to the reaching direction. The simulation trials were also validated by evaluating the EMG patterns of a healthy subject when performing the same reaching task with varying steering force directions. For the 0° steering force trials, the muscle synergies and their activation timings were extracted using nonnegative matrix factorization (NMF). For all other trials, the synergy matrix was fixed and the activation timings were extracted from the product of the EMG of that trial and the pseudo-inverse of the synergy matrix from the 0° steering force trial. By fixing the synergy matrix in the trials with steering forces, we can directly track activation changes of a certain synergy as steering force is varied. For both simulation and experimental trials, circular statistics revealed a linear relationship between changes in steering force direction and principal direction of synergy activation. These results suggest that the activation of a synergy can be controlled directly by the direction of an applied steering force. This has relevant implications in synergy-based controller design because a computer can easily manipulate a patient’s muscle synergies and track the changes while avoiding the computational expense of NMF. In addition, similar analysis could be used to extract the relationship between applied forces and changes in synergies for other types of motion. 
    more » « less
  5. Abstract In this study, a hybrid predictive model is used to predict 3D asymmetric lifting motion and assess potential musculoskeletal lower back injuries for asymmetric lifting tasks. The hybrid model has two modules: a skeletal module and an OpenSim musculoskeletal module. The skeletal module consists of a dynamic joint strength based 40 degrees of freedom spatial skeletal model. The skeletal module can predict the lifting motion, ground reaction forces (GRFs), and center of pressure (COP) trajectory using an inverse dynamics based optimization method. The equations of motion are built by recursive Lagrangian dynamics. The musculoskeletal module consists of a 324-muscle-actuated full-body lumbar spine model. Based on the generated kinematics, GRFs and COP data from the skeletal module, the musculoskeletal module estimates muscle activations using static optimization and joint reaction forces through the joint reaction analysis tool. Muscle activation results between simulated and experimental EMG are compared to validate the model. Finally, potential lower back injuries are evaluated for a specific-weight asymmetric lifting task. The shear and compression spine loads are compared to NIOSH recommended limits. At the beginning of the dynamic lifting process, the simulated compressive spine load beyond the NIOSH action limit but less than the permissible limit. This is due to the fatigue factors considered in NIOSH lifting equation. 
    more » « less