In this work, we outline a methodology for determining optimal helical flagella placement and phase shift that maximize fluid pumping through a rectangular flow meter above a simulated bacterial carpet. This method uses a Genetic Algorithm (GA) combined with a gradient-based method, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, to solve the optimization problem and the Method of Regularized Stokeslets (MRS) to simulate the fluid flow. This method is able to produce placements and phase shifts for small carpets and could be adapted for implementation in larger carpets and various fluid tasks. Our results show that given identical helices, optimal pumping configurations are influenced by the size of the flow meter. We also show that intuitive designs, such as uniform placement, do not always lead to a high-performance carpet.
more »
« less
This content will become publicly available on March 1, 2026
Using theory and experiments of spheres moving near boundaries to optimize the method of images for regularized Stokeslets
The general system of images for regularized Stokeslets (GSIRS) developed by Cortez and Varela [] is used extensively to model Stokes flow phenomena such as microorganisms swimming near a boundary. Our collaborative team uses dynamically similar scaled macroscopic experiments to test theories for forces and torques on spheres moving near a boundary and uses these data and the method of regularized Stokeslets (MRS) created by Cortez [] to calibrate the GSIRS. We find excellent agreement between theory and experiments, which provides experimental validation of exact series solutions for spheres moving near an infinite plane boundary. We test two surface discretization methods commonly used in the literature: the 6-patch method and the spherical centroidal Voronoi tessellation (SCVT) method. Our data show that a discretization method, such as SCVT, that uniformly distributes points provides the most accurate results when the motional symmetry is broken by the presence of a boundary. We use theory and the MRS to find optimal values for the regularization parameter in free space for a given surface discretization and show that the optimal regularization parameter values can be fit with simple formulas when using the SCVT method. We also present a regularization function with higher-order accuracy when compared with the regularization function previously introduced by Cortez []. The simulated force and torque values compare very well with experiments and theory for a wide range of boundary distances. However, we find that for a fixed discretization of the sphere, the simulations lose accuracy when the gap between the edge of the sphere and the wall is smaller than the average distance between discretization points in the SCVT method. We also show an alternative method to calibrate the GSIRS to simulate sphere motion arbitrarily close to the boundary. Our computational parameters and methods along with our matlab and python implementations of the series solution of Lee and Leal [], MRS, and GSIRS provide researchers with important resources to optimize the GSIRS and other numerical methods, so that they can efficiently and accurately simulate spheres moving near a boundary.
more »
« less
- PAR ID:
- 10627272
- Publisher / Repository:
- Physical Review Fluids
- Date Published:
- Journal Name:
- Physical Review Fluids
- Volume:
- 10
- Issue:
- 3
- ISSN:
- 2469-990X
- Subject(s) / Keyword(s):
- Low Reynolds number sphere motion method of Regularized Stokeslets, method of images for regularized Stokeslets
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tree-based models such as decision trees and random forests (RF) are a cornerstone of modern machine-learning practice. To mitigate overfitting, trees are typically regularized by a variety of techniques that modify their structure (e.g. pruning). We introduce Hierarchical Shrinkage (HS), a post-hoc algorithm that does not modify the tree structure, and instead regularizes the tree by shrinking the prediction over each node towards the sample means of its ancestors. The amount of shrinkage is controlled by a single regularization parameter and the number of data points in each ancestor. Since HS is a post-hoc method, it is extremely fast, compatible with any tree growing algorithm, and can be used synergistically with other regularization techniques. Extensive experiments over a wide variety of real world datasets show that HS substantially increases the predictive performance of decision trees, even when used in conjunction with other regularization techniques. Moreover, we find that applying HS to each tree in an RF often improves accuracy, as well as its interpretability by simplifying and stabilizing its decision boundaries and SHAP values. We further explain the success of HS in improving prediction performance by showing its equivalence to ridge regression on a (supervised) basis constructed of decision stumps associated with the internal nodes of a tree. All code and models are released in a full fledged package available on Github.more » « less
-
We propose a stochastic variance-reduced cubic regularized Newton method (SVRC) for non-convex optimization. At the core of our algorithm is a novel semi-stochastic gradient along with a semi-stochastic Hessian, which are specifically designed for cubic regularization method. We show that our algorithm is guaranteed to converge to an $$(\epsilon,\sqrt{\epsilon})$$-approximate local minimum within $$\tilde{O}(n^{4/5}/\epsilon^{3/2})$$ second-order oracle calls, which outperforms the state-of-the-art cubic regularization algorithms including subsampled cubic regularization. Our work also sheds light on the application of variance reduction technique to high-order non-convex optimization methods. Thorough experiments on various non-convex optimization problems support our theory.more » « less
-
We remark on the use of regularized Stokeslets in the slender body theory (SBT) approximation of Stokes flow about a thin fiber of radius ϵ>0. Denoting the regularization parameter by δ, we consider regularized SBT based on the most common regularized Stokeslet plus a regularized doublet correction. Given sufficiently smooth force data along the filament, we derive L∞ bounds for the difference between regularized SBT and its classical counterpart in terms of δ, ϵ, and the force data. We show that the regularized and classical expressions for the velocity of the filament itself differ by a term proportional to log(δ/ϵ); in particular, δ=ϵ is necessary to avoid an O(1) discrepancy between the theories. However, the flow at the surface of the fiber differs by an expression proportional to log(1+δ2/ϵ2), and any choice of δ∝ϵ will result in an O(1) discrepancy as ϵ→0. Consequently, the flow around a slender fiber due to regularized SBT does not converge to the solution of the well-posed slender body PDE which classical SBT is known to approximate. Numerics verify this O(1) discrepancy but also indicate that the difference may have little impact in practice.more » « less
-
A finite difference scheme is used to develop a numerical method to solve the flow of an unbounded viscoelastic fluid with zero to moderate inertia around a prolate spheroidal particle. The equations are written in prolate spheroidal coordinates, and the shape of the particle is exactly resolved as one of the coordinate surfaces representing the inner boundary of the computational domain. As the prolate spheroidal grid is naturally clustered near the particle surface, good resolution is obtained in the regions where the gradients of relevant flow variables are most significant. This coordinate system also allows large domain sizes with a reasonable number of mesh points to simulate unbounded fluid around a particle. Changing the aspect ratio of the inner computational boundary enables simulations of different particle shapes ranging from a sphere to a slender fiber. Numerical studies of the latter particle shape allow testing of slender body theories. The mass and momentum equations are solved with a Schur complement approach allowing us to solve the zero inertia case necessary to isolate the viscoelastic effects. The singularities associated with the coordinate system are overcome using L’Hopital’s rule. A straightforward imposition of conditions representing a time-varying combination of linear flows on the outer boundary allows us to study various flows with the same computational domain geometry. For the special but important case of zero fluid and particle inertia we obtain a novel formulation that satisfies the force- and torque-free constraint in an iteration-free manner. The numerical method is demonstrated for various flows of Newtonian and viscoelastic fluids around spheres and spheroids (including those with large aspect ratio). Good agreement is demonstrated with existing theoretical and numerical results.more » « less
An official website of the United States government
