skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Targeting the Weak Spot: Preferential Disruption of Bacterial Poles by Janus Nanoparticles
The interaction between nanoparticles (NPs) and bacterial cell envelopes is crucial for designing effective antibacterial materials against multi-drug-resistant pathogens. However, the current understanding assumes a uniform bacterial cell wall. This study challenges that assumption by investigating how bacterial cell wall curvature impacts antibacterial NP action. Focusing on Janus NPs, which feature segregated hydrophobic and polycationic ligands and previously demonstrated high efficacy against diverse bacteria, we found that these NPs preferentially target and disrupt bacterial poles. Experimental and computational approaches reveal that curvature at E. coli poles induces conformational changes in lipopolysaccharide (LPS) polymers on the outer membrane, exposing underlying lipids for NP-mediated disruption. We establish that curvature-induced targeting by Janus NPs depends on the outer membrane composition and is most pronounced at physiologically relevant LPS densities. This work demonstrates that high-curvature regions of bacterial cell walls are “weak spots” for Janus NPs, thereby aiding the development of more effective targeted therapies.  more » « less
Award ID(s):
2153891 2534273 2313754
PAR ID:
10627438
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Nano Letters
Volume:
24
Issue:
49
ISSN:
1530-6984
Page Range / eLocation ID:
15886 to 15895
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Nanoparticles (NPs) hold promise as alternatives to antibiotics in the fight against multi-drug-resistant bacteria. However, concerns about their cytotoxicity, particularly their effects on mammalian cells, must be thoroughly addressed to ensure therapeutic safety. Amphiphilic Janus NPs, which have segregated hydrophobic and polycationic ligands on two hemispheres, have previously been shown to exhibit potent antibacterial activity. Methods In this study, we evaluated the cytotoxicity of amphiphilic Janus NPs in immune and cancer cell lines. Cytotoxicity assays were performed to assess the effects of Janus NPs on cell viability and membrane integrity, with a particular focus on how internalization of the nanoparticles influenced cellular responses. Results The results revealed that both immune and cancer cells exhibited negligible cytotoxic effects when exposed to Janus NPs. However, phagocytic immune cells demonstrated greater susceptibility to membrane damage and viability loss, suggesting that internalization plays a significant role in nanoparticle-induced cytotoxicity. Conclusions Amphiphilic Janus NPs show great potential as highly effective antibacterial agents with minimal cytotoxicity. While immune cells may be more vulnerable to nanoparticle-induced damage due to their internalization capacity, these findings support the further investigation of Janus NPs for clinical applications. 
    more » « less
  2. null (Ed.)
    Abstract Background Though many plant defensins exhibit antibacterial activity, little is known about their antibacterial mode of action (MOA). Antimicrobial peptides with a characterized MOA induce the expression of multiple bacterial outer membrane modifications, which are required for resistance to these membrane-targeting peptides. Mini-Tn 5-lux mutant strains of Pseudomonas aeruginosa with Tn insertions disrupting outer membrane protective modifications were assessed for sensitivity against plant defensin peptides. These transcriptional lux reporter strains were also evaluated for lux gene expression in response to sublethal plant defensin exposure. Also, a plant pathogen, Pseudomonas syringae pv. syringae was modified through transposon mutagenesis to create mutants that are resistant to in vitro MtDef4 treatments. Results Plant defensins displayed specific and potent antibacterial activity against strains of P. aeruginosa . A defensin from Medicago truncatula , MtDef4, induced dose-dependent gene expression of the aminoarabinose modification of LPS and surface polycation spermidine production operons. The ability for MtDef4 to damage bacterial outer membranes was also verified visually through fluorescent microscopy. Another defensin from M. truncatula , MtDef5, failed to induce lux gene expression and limited outer membrane damage was detected with fluorescent microscopy. The transposon insertion site on MtDef4 resistant P. syringae pv. syringae mutants was sequenced, and modifications of ribosomal genes were identified to contribute to enhanced resistance to plant defensin treatments. Conclusions MtDef4 damages the outer membrane similar to polymyxin B, which stimulates antimicrobial peptide resistance mechanisms to plant defensins. MtDef5, appears to have a different antibacterial MOA. Additionally, the MtDef4 antibacterial mode of action may also involve inhibition of translation. 
    more » « less
  3. In recent years, there has been a heightened interest in the self-assembly of nanoparticles (NPs) that is mediated by their adsorption onto lipid membranes. The interplay between the adhesive energy of NPs on a lipid membrane and the membrane’s curvature energy causes it to wrap around the NPs. This results in an interesting membrane curvature-mediated interaction, which can lead to the self-assembly of NPs on lipid membranes. Recent studies have demonstrated that Janus spherical NPs, which adhere to lipid vesicles, can self-assemble into well-ordered nanoclusters with various geometries, including a few Platonic solids. The present study explores the additional effect of geometric anisotropy on the self-assembly of Janus NPs on lipid vesicles. Specifically, the current study utilized extensive molecular dynamics simulations to investigate the arrangement of Janus spherocylindrical NPs on lipid vesicles. We found that the additional geometric anisotropy significantly expands the range of NPs’ self-assemblies on lipid vesicles. The specific geometries of the resulting nanoclusters depend on several factors, including the number of Janus spherocylindrical NPs adhering to the vesicle and their aspect ratio. The lipid membrane-mediated self-assembly of NPs, demonstrated by this work, provides an alternative cost-effective route for fabricating highly engineered nanoclusters in three dimensions. Such structures, with the current wide range of material choices, have great potential for advanced applications, including biosensing, bioimaging, drug delivery, nanomechanics, and nanophotonics 
    more » « less
  4. null (Ed.)
    Using molecular dynamics simulations of a coarse-grained implicit solvent model, we investigate the binding of crescent-shaped nanoparticles (NPs) on tubular lipid membranes. The NPs adhere to the membrane through their concave side. We found that the binding/unbinding transition is first-order, with the threshold binding energy being higher than the unbinding threshold, and the energy barrier between the bound and unbound states at the transition that increases with increasing the NP's arclength L np or curvature mismatch μ = R c / R np , where R c and R np are the radii of curvature of the tubular membrane and the NP, respectively. Furthermore, we found that the threshold binding energy increases with increasing either L np or μ . NPs with curvature larger than that of the tubule ( μ > 1) lie perpendicularly to the tubule's axis. However, for μ smaller than a specific arclength-dependent mismatch μ *, the NPs are tilted with respect to the tubule's axis, with the tilt angle that increases with decreasing μ . We also investigated the self-assembly of the NPs on the tubule at relatively weak adhesion strength and found that for μ > 1 and high values of L np , the NPs self-assemble into linear chains, and lie side-by-side. For μ < μ * and high L np , the NPs also self-assemble into chains, while being tilted with respect to the tubule's axis. 
    more » « less
  5. Cell-like hybrids from natural and synthetic amphiphiles provide a platform to engineer functions of synthetic cells and protocells. Cell membranes and vesicles prepared from human cell membranes are relatively unstable in vitro and therefore are difficult to study. The thicknesses of biological membranes and vesicles self-assembled from amphiphilic Janus dendrimers, known as dendrimersomes, are comparable. This feature facilitated the coassembly of functional cell-like hybrid vesicles from giant dendrimersomes and bacterial membrane vesicles generated from the very stable bacterialEscherichia colicell after enzymatic degradation of its outer membrane. Human cells are fragile and require only mild centrifugation to be dismantled and subsequently reconstituted into vesicles. Here we report the coassembly of human membrane vesicles with dendrimersomes. The resulting giant hybrid vesicles containing human cell membranes, their components, and Janus dendrimers are stable for at least 1 y. To demonstrate the utility of cell-like hybrid vesicles, hybrids from dendrimersomes and bacterial membrane vesicles containing YadA, a bacterial adhesin protein, were prepared. The latter cell-like hybrids were recognized by human cells, allowing for adhesion and entry of the hybrid bacterial vesicles into human cells in vitro. 
    more » « less