skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 14, 2025

Title: Tunable FSRS measurements with reduced background signals: Using an etalon filter to generate picosecond pump pulses in the 460–650 nm range
Generating wavelength-tunable picosecond laser pulses from an ultrafast laser source is essential for femtosecond stimulated Raman scattering (FSRS) measurements. Etalon filters produce narrowband (picosecond) pulses with an asymmetric temporal profile that is ideal for stimulated resonance Raman excitation. However, direct spectral filtering of femtosecond laser pulses is typically limited to the laser’s fundamental and harmonic frequencies due to very low transmission of broad bandwidth pulses through an etalon. Here, we show that a single etalon filter (15 cm−1 bandwidth; 172 cm−1 free spectral range) provides an efficient and tunable option for generating Raman pump pulses over a wide range of wavelengths when used in combination with an optical parametric amplifier and a second harmonic generation (SHG) crystal that has an appropriate phase-matching bandwidth for partial spectral compression before the etalon. Tuning the SHG wavelength to match individual transmission lines of the etalon filter gives asymmetric picosecond pump pulses over a range of 460–650 nm. Importantly, the SHG crystal length determines the temporal rise time of the filtered pulse, which is an important property for reducing background and increasing Raman signals compared with symmetric pulses having the same total energy. We examine the wavelength-dependent trade-off between spectral narrowing via SHG and the asymmetric pulse shape after transmission through the etalon. This approach provides a relatively simple and efficient method to generate tunable pump pulses with the optimum temporal profile for resonance-enhanced FSRS measurements across the visible region of the spectrum.  more » « less
Award ID(s):
1956387
PAR ID:
10627460
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
161
Issue:
22
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Synchronized optical pulses are widely used. We report here characterization and measurement of synchronized femtosecond and picosecond pulses from a Ti:Sapphire laser (nominally 800 nm) and a Nd:YAG laser (1064 nm), respectively. Synchronization is achieved by utilizing soliton self-frequency shift in a photonic-crystal fiber that allows the 800 nm femtosecond oscillator to seed the third-harmonic generation (355 nm) of picosecond regenerative amplifier. The relative timing jitter between the amplified femtosecond and the third-harmonic generation of picosecond pulses is (710 ± 160) fs, which is only (1.17 ± 0.26)% of the picosecond pulse duration. This work paves way for applications in stimulated Raman scattering spectroscopy and amplification. 
    more » « less
  2. While industrial-grade Yb-based amplifiers have become very prevalent, their limited gain bandwidth has created a large demand for robust spectral broadening techniques that allow for few-cycle pulse compression. In this work, we perform a comparative study between several atomic and molecular gases as media for spectral broadening in a hollow-core fiber geometry. Exploiting nonlinearities such as self-phase modulation, self-steepening, and stimulated Raman scattering, we explore the extent of spectral broadening and its dependence on gas pressure, the critical power for self-focusing, and the optimal regime for few-cycle pulse compression. Using a 3-mJ, 200-fs input laser pulses, we achieve 17 fs, few-cycle pulses with 80% fiber energy transmission efficiency. The optimal parameters can be scaled for higher or lower input pulse energies with appropriate gas parameters and fiber geometry. 
    more » « less
  3. Proton transfer processes of organic molecules are key to charge transport and photoprotection in biological systems. Among them, excited-state intramolecular proton transfer (ESIPT) reactions are characterized by quick and efficient charge transfer within a molecule, resulting in ultrafast proton motions. The ESIPT-facilitated interconversion between two tautomers (PS and PA) comprising the tree fungal pigment Draconin Red in solution was investigated using a combination of targeted femtosecond transient absorption (fs-TA) and excited-state femtosecond stimulated Raman spectroscopy (ES-FSRS) measurements. Transient intensity (population and polarizability) and frequency (structural and cooling) dynamics of –COH rocking and –C=C, –C=O stretching modes following directed stimulation of each tautomer elucidate the excitation-dependent relaxation pathways, particularly the bidirectional ESIPT progression out of the Franck–Condon region to the lower-lying excited state, of the intrinsically heterogeneous chromophore in dichloromethane solvent. A characteristic overall excited-state PS-to-PA transition on the picosecond timescale leads to a unique “W”-shaped excited-state Raman intensity pattern due to dynamic resonance enhancement with the Raman pump–probe pulse pair. The ability to utilize quantum mechanics calculations in conjunction with steady-state electronic absorption and emission spectra to induce disparate excited-state populations in an inhomogeneous mixture of similar tautomers has broad implications for the modeling of potential energy surfaces and delineation of reaction mechanisms in naturally occurring chromophores. Such fundamental insights afforded by in-depth analysis of ultrafast spectroscopic datasets are also beneficial for future development of sustainable materials and optoelectronics. 
    more » « less
  4. The success of nonlinear optics relies largely on pulse-to-pulse consistency. In contrast, covariance-based techniques used in photoionization electron spectroscopy and mass spectrometry have shown that a wealth of information can be extracted from noise that is lost when averaging multiple measurements. Here, we apply covariance-based detection to nonlinear optical spectroscopy, and show that noise in a femtosecond laser is not necessarily a liability to be mitigated, but can act as a unique and powerful asset. As a proof of principle we apply this approach to the process of stimulated Raman scattering in α-quartz. Our results demonstrate how nonlinear processes in the sample can encode correlations between the spectral components of ultrashort pulses with uncorrelated stochastic fluctuations. This in turn provides richer information compared with the standard nonlinear optics techniques that are based on averages over many repetitions with well-behaved laser pulses. These proof-of-principle results suggest that covariance-based nonlinear spectroscopy will improve the applicability of fs nonlinear spectroscopy in wavelength ranges where stable, transform-limited pulses are not available, such as X-ray free-electron lasers which naturally have spectrally noisy pulses ideally suited for this approach. 
    more » « less
  5. We present time-resolved interferometry to simultaneously measure plasma densities and electron collision times for strong field laser-matter interactions. First, an intense femtosecond pump pulse generates plasma in a solid and second, a weak 800-nm femtosecond probe traverses the pump-induced plasma and is sent to an interferometer with controlled time delay between pump and probe. By analyzing the interferograms using Fourie methods, we can extract plasma densities and electron collision times in plasma simultaneously with micrometer spatial and femtosecond temporal resolutions. Using the technique, we study the plasma dynamics when a wavelength-varied (λ= 1.2-2.3 μm) pump pulse undergoes laser filamentation in solid materials. 
    more » « less