Abstract Serotonergic neurons produce extensively branched axons that fill most of the central nervous system, where they modulate a wide variety of behaviors. Many behavioral disorders have been correlated with defective serotonergic axon morphologies. Proper behavioral output therefore depends on the precise outgrowth and targeting of serotonergic axons during development. To direct outgrowth, serotonergic neurons utilize serotonin as a signaling molecule prior to it assuming its neurotransmitter role. This process, termed serotonin autoregulation, regulates axon outgrowth, branching, and varicosity development of serotonergic neurons. However, the receptor that mediates serotonin autoregulation is unknown. Here we asked if serotonin receptor 5‐HT1A plays a role in serotonergic axon outgrowth and branching. Using culturedDrosophilaserotonergic neurons, we found that exogenous serotonin reduced axon length and branching only in those expressing 5‐HT1A. Pharmacological activation of 5‐HT1A led to reduced axon length and branching, whereas the disruption of 5‐HT1A rescued outgrowth in the presence of exogenous serotonin. Altogether this suggests that 5‐HT1A is a serotonin autoreceptor in a subpopulation of serotonergic neurons and initiates signaling pathways that regulate axon outgrowth and branching duringDrosophiladevelopment.
more »
« less
This content will become publicly available on July 17, 2026
Spinally Projecting Serotonergic Neurons in Motor Network Modulation
Spinally projecting serotonergic (5-HTsp) neurons represent a heterogeneous population of neurons in the brainstem whose relevance in the control of movement has largely been inferred. Numerous studies across a variety of species have suggested that 5-HTsp neurons exert a widespread influence on spinal sensorimotor networks, operating at multiple levels (primary afferents, interneurons, and motoneurons) through various serotonin receptor subtypes. However, despite the anatomical and neurochemical complexity of the 5-HTsp system, most supporting evidence has largely been derived from indirect approaches (e.g., exogenous application of 5-HT and agonists/antagonists of 5-HT receptors). Direct demonstrations of specific anatomical and functional connectivity have been limited, occasionally yielding apparent discrepant results. Consequently, as the primary provider of serotonin to the spinal cord, the exact contributions of the 5-HTsp neurons remain to be fully elucidated. For this mini-review, we sifted through the literature of the last six decades, starting after the characterization of the brainstem raphe nuclei and monoaminergic systems [1–3], to provide a clearer picture of what is currently known of the anatomy and influences of the different populations of 5-HTsp neurons on sensorimotor circuits and motor behaviors. We focused on studies reporting direct manipulation of brainstem 5-HTsp neurons, excluding those targeting 5-HT neurotransmission by exogenous application of 5-HT. This emphasis aims to highlight the urgency of resolving how 5-HTsp neuron subpopulations differentiate anatomically and functionally, so that they can be integrated as dedicated components in current models of supraspinal control of movement and motor diseases such as Parkinson‘s and amyotrophic lateral sclerosis. Along the way, we point out gaps in knowledge that may be filled using newly available research tools.
more »
« less
- Award ID(s):
- 2015317
- PAR ID:
- 10627483
- Publisher / Repository:
- American Physiological Society
- Date Published:
- Journal Name:
- Journal of Neurophysiology
- ISSN:
- 0022-3077
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Capers, Miriam (Ed.)Supraspinal signals play a significant role in compensatory responses to postural perturbations after spinal cord injury (SCI). SCI disrupts descending motor control signals as well as ascending somatosensory information to and from below the lesion. In intact animals, While cortical signals are not necessary for basic postural tasks, but neurons in the motor cortex have been shown to respond to periodic postural perturbations in intact animals. However, the role of the cortex in postural control after spinal cord injury in response to unexpected postural perturbations has not been studied. To better understand how spinal lesions impact cortical encoding of information about unexpected postural perturbations, the activity of single neurons in the rat hindlimb sensorimotor cortex (HLSMC) were recorded during unexpected tilts before and after a complete midthoracic spinal transection. In a subset of animals, limb ground reaction forces were collected as well. Results show that responses in the HLSMC were modulated with changes in tilt severity (i.e. tilt velocity). As initial velocity of the tilt increased, more information was conveyed by the HLSMC neurons about the perturbation due to increases in both the number of recruited neurons and the magnitude of their response. After SCI hindlimb ground reaction forces were both attenuated and delayed, and the neural responses were delayed and less likely to respond to slower tilts. This resulted in a moderate decrease inan attenuation of the information conveyed by cortical neurons about the tilts, requiring more cells to convey the same amount of information as before the transection. Given that reorganization of the hindlimb sensorimotor cortex in response to therapy after complete mid-thoracic SCI is necessary for behavioral recovery, this sustained encoding of information after SCI could be a substrate for the reorganization that uses sensory information from above the lesion to control trunk muscles that permit weight-supported stepping and postural control.more » « less
-
Serotonin (5-HT) is a critical neurotransmitter involved in many neuronal functions, and 5-HT depletion has been linked to several mental diseases. The fast release and clearance of serotonin in the extracellular space, low analyte concentrations, and a multitude of interfering species make the detection of serotonin challenging. This work presents an electrochemical aptamer-based biosensing platform that can monitor 5-HT continuously with high sensitivity and selectivity. Our electrochemical sensor showed a response time of approximately 1 min to a step change in the serotonin concentration in continuous monitoring using a single-frequency EIS (electrochemical impedance spectroscopy) technique. The developed sensing platform was able to detect 5-HT in the range of 25–150 nM in the continuous sample fluid flow with a detection limit (LOD) of 5.6 nM. The electrochemical sensor showed promising selectivity against other species with similar chemical structures and redox potentials, including dopamine (DA), norepinephrine (NE), L-tryptophan (L-TP), 5-hydroxyindoleacetic acid (5-HIAA), and 5-hydroxytryptophan (5-HTP). The proposed sensing platform is able to achieve high selectivity in the nanomolar range continuously in real-time, demonstrating the potential for monitoring serotonin from neurons in organ-on-a-chip or brain-on-a-chip-based platforms.more » « less
-
Abstract In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and information bottleneck connecting the brain and the ventral nerve cord (VNC, spinal cord analogue) and comprises diverse populations of descending (DN), ascending (AN) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Integrating three separate EM datasets, we now provide a complete connectomic description of the ascending and descending neurons of the female nervous system ofDrosophilaand compare them with neurons of the male nerve cord. Proofread neuronal reconstructions have been matched across hemispheres, datasets and sexes. Crucially, we have also matched 51% of DN cell types to light level data defining specific driver lines as well as classifying all ascending populations. We use these results to reveal the general architecture, tracts, neuropil innervation and connectivity of neck connective neurons. We observe connected chains of descending and ascending neurons spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analysis of circuits implicated in sex-related behaviours, including female ovipositor extrusion (DNp13), male courtship (DNa12/aSP22) and song production (AN hemilineage 08B). Our work represents the first EM-level circuit analyses spanning the entire central nervous system of an adult animal.more » « less
-
null (Ed.)Abstract The onset and exacerbation of obesity involves the overproduction of the adipocyte-derived hormone leptin, a key mediator of homeostatic appetite regulation and a signal for satiety. Although leptin’s hypothalamic regulation of food intake has been extensively investigated, its role in tandem with the anorectic neurotransmitter serotonin (5-HT) has been less characterized. 5-HT is synthesized in the dorsal raphe nucleus (DRN) where anatomical projections to many hypothalamic nuclei have previously been identified. Preliminary studies in our lab have: (1) identified serotonergic neurons responsive to leptin in the DRN that project to the arcuate nucleus (ARC) of the hypothalamus and (2) demonstrated leptin injected into the DRN significantly decreases food intake. The objective of the current study was to identify the role of 5-HT in leptin’s regulation of food intake first within the DRN, then between the DRN and the ARC. Adult male Sprague Dawley rats underwent stereotaxic surgery for guide cannula implantation in the DRN. After recovery, animals were administered 100 µg of p-chlorophenylalanine (PCPA), an inhibitor of 5-HT synthesis, in the DRN each day for four days. On the fourth day, leptin was also administered in the DRN (5 µg/rat) and food intake was measured over a 24-hour time course. ANOVA analysis revealed a significant difference in 24-hour food intake [F (3, 18) = 3.972; P = 0.0246] and post-hoc analysis showed that animals treated with leptin significantly decreased food intake (17.2 ± 2.0 g) compared to control rats (25.4 ± 0.9 g), whereas PCPA-treated rats did not differ from the control rats, suggesting that depletion of 5-HT attenuated leptin’s ability to regulate food intake within the DRN. To examine the role of 5-HT on leptin’s hypothalamic action, a subsequent experiment was conducted by implanting an additional cannula into the ARC for the administration of leptin or vehicle on the fourth day of treatment. ANOVA analysis revealed a significant difference in 24-hour food intake [F (3, 16) = 5.998; P = 0.0061] and post-hoc analysis showed that only rats treated with leptin in the ARC significantly decreased food intake (14.0 ± 1.5 g) compared to controls (21.8 ± 0.5 g). 5-HT depletion was assessed post-mortem using immunohistochemistry and was later quantified. Collectively, these results demonstrate that leptin’s ability to regulate food intake is dependent on 5-HT, regardless of the area of regulation (i.e. DRN or the hypothalamus).more » « less
An official website of the United States government
