skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 7, 2026

Title: Order to disorder transition due to entropy in layered and 2D carbides
In compositionally complex materials, there is controversy on the effect of enthalpy versus entropy on the structure and short-range ordering in so-called high-entropy materials. To help address this controversy, we synthesized and probed 40 M4AlC3 layered carbide phases containing 2 to 9 metals and found that short-range ordering from enthalpy is present until the entropy increases enough to achieve complete disordering of the transition metals in their atomic planes. We transformed all these layered carbide phases into two-dimensional (2D) sheets and showed the effects of the order vs. disorder on their surface properties and electronic behavior. This study suggests the key effect that the competition between enthalpy and entropy has on short-range order in multi-compositional materials.  more » « less
Award ID(s):
2419026
PAR ID:
10627563
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Publisher / Repository:
ChemrXiv
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This talk focuses on the principles of 4D-STEM based electron nanodiffraction techniques for defect, strain and short-range ordering analysis using electron diffuse scattering [8, 9]. We review recent progress made in scanning electron nanodiffraction (SEND) data collection, new algorithms based on cepstral analysis, and machine learning based electron DP analysis. These progresses will be highlighted using defect detection, and short-range ordering analysis as application examples. The materials of the study are the medium entropy alloy, CrCoNi, which has exceptional low-temperature mechanical strength and ductility. We will show how SEND helps our understanding of non-random chemical mixing in a CrCoNi alloy, resulting from short-range ordering, behind the mechanical strength in CrCoNi and how these developments provide general opportunities for an atomistic-structure study in advanced alloys. 
    more » « less
  2. Abstract Recent advances in 2D magnetism have heightened interest in layered magnetic materials due to their potential for spintronics. In particular, layered semiconducting antiferromagnets exhibit intriguing low‐dimensional semiconducting behavior with both charge and spin as carrier controls. However, synthesis of these compounds is challenging and remains rare. Here, first‐principles based high‐throughput search is conducted to screen potentially stable mixed metal phosphorous trichalcogenides (MMP2X6, where M and Mare transition metals and X is a chalcogenide) that have a wide range of tunable bandgaps and interesting magnetic properties. Among the potential candidates, a stable semiconducting layered magnetic material, CdFeP2Se6, that exhibits a short‐range antiferromagnetic order atTN = 21 K with an indirect bandgap of 2.23 eV is successfully synthesized . This work suggests that high‐throughput screening assisted synthesis can be an effective method for layered magnetic materials discovery. 
    more » « less
  3. Intercalated layered materials offer distinctive properties and serve as precursors for important two-dimensional (2D) materials. However, intercalation of non–van der Waals structures, which can expand the family of 2D materials, is difficult. We report a structural editing protocol for layered carbides (MAX phases) and their 2D derivatives (MXenes). Gap-opening and species-intercalating stages were respectively mediated by chemical scissors and intercalants, which created a large family of MAX phases with unconventional elements and structures, as well as MXenes with versatile terminals. The removal of terminals in MXenes with metal scissors and then the stitching of 2D carbide nanosheets with atom intercalation leads to the reconstruction of MAX phases and a family of metal-intercalated 2D carbides, both of which may drive advances in fields ranging from energy to printed electronics. 
    more » « less
  4. We present an exploration of a family of compositionally complex cubic spinel ferrites featuring combinations of Mg, Fe, Co, Ni, Cu, Mn, and Zn cations, systematically investigating the average and local atomic structures, chemical short-range order, magnetic spin configurations, and magnetic properties. All compositions result in ferrimagnetic average structures with extremely similar local bonding environments; however, the samples display varying degrees of cation inversion and, therefore, differing apparent bulk magnetization. Additionally, first-order reversal curve analysis of the magnetic reversal behavior indicates varying degrees of magnetic ordering and interactions, including potentially local frustration. Finally, reverse Monte Carlo modeling of the spin orientation demonstrates a relationship between the degree of cation inversion and the spin collinearity. Collectively, these observations correlate with differences in synthesis procedures. This work provides a framework for understanding magnetic behavior reported for “high-entropy spinels,” revealing many are likely compositionally complex oxides with differing degrees of chemical short-range order—not meeting the community established criteria for high or medium entropy compounds. Moreover, this work highlights the importance of reporting complete sample processing histories and investigating local to long-range atomic arrangements when evaluating potential entropic mixing effects and assumed property correlations in high entropy materials. 
    more » « less
  5. Abstract The exceptional mechanical strength of medium/high-entropy alloys has been attributed to hardening in random solid solutions. Here, we evidence non-random chemical mixing in a CrCoNi alloy, resulting from short-range ordering. A data-mining approach of electron nanodiffraction enabled the study, which is assisted by neutron scattering, atom probe tomography, and diffraction simulation using first-principles theory models. Two samples, one homogenized and one heat-treated, are observed. In both samples, results reveal two types of short-range-order inside nanoclusters that minimize the Cr–Cr nearest neighbors (L12) or segregate Cr on alternating close-packed planes (L11). The L11is predominant in the homogenized sample, while the L12formation is promoted by heat-treatment, with the latter being accompanied by a dramatic change in dislocation-slip behavior. These findings uncover short-range order and the resulted chemical heterogeneities behind the mechanical strength in CrCoNi, providing general opportunities for atomistic-structure study in concentrated alloys for the design of strong and ductile materials. 
    more » « less