skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stokes Spectropolarimetry Applied to Measure Circular Birefringence Dispersion of Aqueous Solutions of Sugars
ABSTRACT Circular birefringence (CB) is defined as the difference in refractive index for opposite circular polarization states and has played a crucial role in the development of stereochemistry and the concept of chirality. It manifests experimentally as optical rotatory dispersion (ORD), that is, the wavelength‐dependent optical rotation of the plane of light polarization. However, most methods for probing ORD rely on analyzing transmitted light asymmetry at single wavelengths (usually the sodium D‐line at 589 nm) with linear polarizers, which cannot discern between unpolarized and circularly polarized light, limiting the apparatus to analyze a single phenomenon. Here we showcase the use of Stokes spectropolarimetry (SSP), a versatile and cost‐effective technique, to probe ORD of circularly birefringent materials. This technique allows complete analysis of the dispersive changes in polarization caused by anisotropic media, portraying a versatile experimental framework to study different types of optical anisotropies with a single spectropolarimeter. Here, aqueous solutions of chiral sucrose, fructose, and their mixtures are investigated. The ORD acquired verify that the optical rotation is proportional to the concentration of the chiral species and follows an inverse proportion with wavelength. As a case study, we show via SSP that ORD at 589 nm (D‐line of sodium) is in good agreement with literature (+63.5° ± 1.4° mL g−1 dm−1for sucrose and −83.7° ± 2.0° mL g−1 dm−1for fructose).  more » « less
Award ID(s):
1848418
PAR ID:
10627648
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Chirality
Volume:
37
Issue:
7
ISSN:
0899-0042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plasmonic nanoparticles with chiral resonances in the visible wavelengths complement optical dissymmetry in the ultraviolet and near-infrared wavelengths in natural products and metamaterials respectively. Here, we show that under oxidative conditions, hot holes photogenerated with circularly polarized light in gold nanoprisms can spatially direct the photodeposition of lead oxide (PbO2), resulting in chiral nanostructures tunable with the polarization and wavelength of light. We observe a g-factor of 3.6 × 10–3, which can be attributed to the enhanced optical dissymmetry with PbO2 deposition of the side of nanoprisms upon illumination with green 532 nm light. Our finite-difference time-domain calculations support the site-specific photodeposition of PbO2 onto nanoprisms. This work shows that plasmonic nanoparticles can have tunable chiral properties imbued as a function of the wavelength and polarization of light. 
    more » « less
  2. Optical phase-change materials exhibit tunable permittivity and switching properties during phase transition, which offers the possibility of dynamic control of optical devices. Here, a wavelength-tunable infrared chiral metasurface integrated with phase-change material GST-225 is demonstrated with the designed unit cell of parallelogram-shaped resonator. By varying the baking time at a temperature above the phase transition temperature of GST-225, the resonance wavelength of the chiral metasurface is tuned in the wavelength range of 2.33 µm to 2.58 µm, while the circular dichroism in absorption is maintained around 0.44. The chiroptical response of the designed metasurface is revealed by analyzing the electromagnetic field and displacement current distributions under left- and right-handed circularly polarized (LCP and RCP) light illumination. Moreover, the photothermal effect is simulated to investigate the large temperature difference in the chiral metasurface under LCP and RCP illumination, which allows for the possibility of circular polarization-controlled phase transition. The presented chiral metasurfaces with phase-change materials offer the potential to facilitate promising applications in the infrared regime, such as chiral thermal switching, infrared imaging, and tunable chiral photonics. 
    more » « less
  3. Creating artificial matter with controllable chirality in a simple and scalable manner brings new opportunities to diverse areas. Here we show two such methods based on controlled vacuum filtration - twist stacking and mechanical rotation - for fabricating wafer-scale chiral architectures of ordered carbon nanotubes (CNTs) with tunable and large circular dichroism (CD). By controlling the stacking angle and handedness in the twist-stacking approach, we maximize the CD response and achieve a high deep-ultraviolet ellipticity of 40 ± 1 mdeg nm−1. Our theoretical simulations using the transfer matrix method reproduce the experimentally observed CD spectra and further predict that an optimized film of twist-stacked CNTs can exhibit an ellipticity as high as 150 mdeg nm−1, corresponding to agfactor of 0.22. Furthermore, the mechanical rotation method not only accelerates the fabrication of twisted structures but also produces both chiralities simultaneously in a single sample, in a single run, and in a controllable manner. The created wafer-scale objects represent an alternative type of synthetic chiral matter consisting of ordered quantum wires whose macroscopic properties are governed by nanoscopic electronic signatures and can be used to explore chiral phenomena and develop chiral photonic and optoelectronic devices. 
    more » « less
  4. Metal‐halide perovskites are known for their strong and tunable luminescence. However, the synthesis of perovskite‐based particles with circularly polarized light emission (CPLE) remains challenging due to the complex interplay of metal‐ligand chemistries, crystallization patterns, and chirality transfer mechanisms. Achiral perovskites can be deposited on chiral “hedgehog” particles (CHIPs) with twisted spikes, producing chiroptically active materials with spectroscopic bands specific to the perovskite and chirality specific to the template CHIPs. Left‐ and right‐handed CPLE is engineered into complex particles comprised of a layer of perovskite deposited onto CHIPs coated with an intermediate silica layer. The spectral position of chiroptical bands, the optical asymmetryg‐factors, and single‐particle circularly polarized microscopy indicate that the observed CPLE is dominated by the post‐emission scattering from the twisted spikes of the parent particle. Templating luminescent nanofilms on CHIPs provides a simple pathway to a wide range of complex chiroptical materials; the dispersibility of the CHIPs in various solvents and the tunability of their chiral geometry enable their applications as single‐particle emitters with strong and controllable polarization rotation. 
    more » « less
  5. Most chiral metamaterials and metasurfaces are designed to operate in a single wavelength band and with a certain circular dichroism (CD) value. Here, mid-infrared chiral metasurface absorbers with selective CD in dual-wavelength bands are designed and demonstrated. The dual-band CD selectivity and tunability in the chiral metasurface absorbers are enabled by the unique design of a unit cell with two coupled rectangular bars. It is shown that the sign of CD in each wavelength band can be independently controlled and flipped by simply adjusting the geometric parameters, the width and the length, of the vertical rectangular bars. The mechanism of the dual-band CD selection in the chiral metasurface absorber is further revealed by studying the electric field and magnetic field distributions of the antibonding and bonding modes supported in the coupled bars under circularly polarized incident light. Furthermore, the chiral resonance wavelength can be continuously increased by scaling up the geometric parameters of the metasurface unit cell. The demonstrated results will contribute to the advance of future mid-infrared applications such as chiral molecular sensing, thermophotovoltaics, and optical communication. 
    more » « less