skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 23, 2026

Title: Addressing misspecification in simulation-based inference through data-driven calibration
Driven by steady progress in deep generative modeling, simulation-based inference (SBI) has emerged as the workhorse for inferring the parameters of stochastic simulators. However, recent work has demonstrated that model misspecification can compromise the reliability of SBI, preventing its adoption in important applications where only misspecified simulators are available. This work introduces robust posterior estimation~(RoPE), a framework that overcomes model misspecification with a small real-world calibration set of ground-truth parameter measurements. We formalize the misspecification gap as the solution of an optimal transport~(OT) problem between learned representations of real-world and simulated observations, allowing RoPE to learn a model of the misspecification without placing additional assumptions on its nature. RoPE demonstrates how OT and a calibration set provide a controllable balance between calibrated uncertainty and informative inference, even under severely misspecified simulators. Results on four synthetic tasks and two real-world problems with ground-truth labels demonstrate that RoPE outperforms baselines and consistently returns informative and calibrated credible intervals.  more » « less
Award ID(s):
2031849
PAR ID:
10627693
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ICML 2025
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. High-resolution, spatially distributed process-based (PB) simulators are widely employed in the study of complex catchment processes and their responses to a changing climate. However, calibrating these PB simulators using observed data remains a significant challenge due to several persistent issues, including the following: (1) intractability stemming from the computational demands and complex responses of simulators, which renders infeasible calculation of the conditional probability of parameters and data, and (2) uncertainty stemming from the choice of simplified representations of complex natural hydrologic processes. Here, we demonstrate how simulation-based inference (SBI) can help address both of these challenges with respect to parameter estimation. SBI uses a learned mapping between the parameter space and observed data to estimate parameters for the generation of calibrated simulations. To demonstrate the potential of SBI in hydrologic modeling, we conduct a set of synthetic experiments to infer two common physical parameters – Manning's coefficient and hydraulic conductivity – using a representation of a snowmelt-dominated catchment in Colorado, USA. We introduce novel deep-learning (DL) components to the SBI approach, including an “emulator” as a surrogate for the PB simulator to rapidly explore parameter responses. We also employ a density-based neural network to represent the joint probability of parameters and data without strong assumptions about its functional form. While addressing intractability, we also show that, if the simulator does not represent the system under study well enough, SBI can yield unreliable parameter estimates. Approaches to adopting the SBI framework for cases in which multiple simulator(s) may be adequate are introduced using a performance-weighting approach. The synthetic experiments presented here test the performance of SBI, using the relationship between the surrogate and PB simulators as a proxy for the real case. 
    more » « less
  2. Summary Model selection is crucial both to high-dimensional learning and to inference for contemporary big data applications in pinpointing the best set of covariates among a sequence of candidate interpretable models. Most existing work implicitly assumes that the models are correctly specified or have fixed dimensionality, yet both model misspecification and high dimensionality are prevalent in practice. In this paper, we exploit the framework of model selection principles under the misspecified generalized linear models presented in Lv & Liu (2014), and investigate the asymptotic expansion of the posterior model probability in the setting of high-dimensional misspecified models. With a natural choice of prior probabilities that encourages interpretability and incorporates the Kullback–Leibler divergence, we suggest using the high-dimensional generalized Bayesian information criterion with prior probability for large-scale model selection with misspecification. Our new information criterion characterizes the impacts of both model misspecification and high dimensionality on model selection. We further establish the consistency of covariance contrast matrix estimation and the model selection consistency of the new information criterion in ultrahigh dimensions under some mild regularity conditions. Our numerical studies demonstrate that the proposed method enjoys improved model selection consistency over its main competitors. 
    more » « less
  3. Machine learning models are bounded by the credibility of ground truth data used for both training and testing. Regardless of the problem domain, this ground truth annotation is objectively manual and tedious as it needs considerable amount of human intervention. With the advent of Active Learning with multiple annotators, the burden can be somewhat mitigated by actively acquiring labels of most informative data instances. However, multiple annotators with varying degrees of expertise poses new set of challenges in terms of quality of the label received and availability of the annotator. Due to limited amount of ground truth information addressing the variabilities of Activity of Daily Living (ADLs), activity recognition models using wearable and mobile devices are still not robust enough for real-world deployment. In this paper, we propose an active learning combined deep model which updates its network parameters based on the optimization of a joint loss function. We then propose a novel annotator selection model by exploiting the relationships among the users while considering their heterogeneity with respect to their expertise, physical and spatial context. Our proposed model leverages model-free deep reinforcement learning in a partially observable environment setting to capture the actionreward interaction among multiple annotators. Our experiments in real-world settings exhibit that our active deep model converges to optimal accuracy with fewer labeled instances and achieves 8% improvement in accuracy in fewer iterations. 
    more » « less
  4. Epidemiological models must be calibrated to ground truth for downstream tasks such as producing forward projections or running what-if scenarios. The meaning of calibration changes in case of a stochastic model since output from such a model is generally described via an ensemble or a distribution. Each member of the ensemble is usually mapped to a random number seed (explicitly or implicitly). With the goal of finding not only the input parameter settings but also the random seeds that are consistent with the ground truth, we propose a class of Gaussian process (GP) surrogates along with an optimization strategy based on Thompson sampling. This Trajectory Oriented Optimization (TOO) approach produces actual trajectories close to the empirical observations instead of a set of parameter settings where only the mean simulation behavior matches with the ground truth. 
    more » « less
  5. Tensegrity robots are composed of rigid struts and flexible cables. They constitute an emerging class of hybrid rigid-soft robotic systems and are promising systems for a wide array of applications, ranging from locomotion to assembly. They are difficult to control and model accurately, however, due to their compliance and high number of degrees of freedom. To address this issue, prior work has introduced a differentiable physics engine designed for tensegrity robots based on first principles. In contrast, this work proposes the use of graph neural networks to model contact dynamics over a graph representation of tensegrity robots, which leverages their natural graph-like cable connectivity between end caps of rigid rods. This learned simulator can accurately model 3-bar and 6-bar tensegrity robot dynamics in simulation-to-simulation experiments where MuJoCo is used as the ground truth. It can also achieve higher accuracy than the previous differentiable engine for a real 3-bar tensegrity robot, for which the robot state is only partially observable. When compared against direct applications of recent mesh-based graph neural network simulators, the proposed approach is computationally more efficient, both for training and inference, while achieving higher accuracy. Code and data are available at https://github.com/nchen9191/tensegrity_gnn_simulator_public 
    more » « less