Turing patterns are fundamental in biophysics, emerging from short-range activation and long-range inhibition processes. However, their paradigm is based on diffusive transport processes that yield patterns with shallower gradients than those observed in nature. A complete physical description of this discrepancy remains unknown. We propose a solution to this phenomenon by investigating the role of diffusiophoresis, which is the propulsion of colloids by a chemical gradient, in Turing patterns. Diffusiophoresis enables robust patterning of colloidal particles with substantially finer length scales than the accompanying chemical Turing patterns. A scaling analysis and a comparison to recent experiments indicate that chromatophores, ubiquitous in biological pattern formation, are likely diffusiophoretic and the colloidal Péclet number controls the pattern enhancement. This discovery suggests that important features of biological pattern formation can be explained with a universal mechanism that is quantified straightforwardly from the fundamental physics of colloids.
more »
« less
This content will become publicly available on January 22, 2026
Physicochemical Hydrodynamics of Particle Diffusiophoresis Driven by Chemical Gradients
Chemical gradients, the spatial variations in chemical concentrations and components, are omnipresent in environments ranging from biological and environmental systems to industrial processes. These thermodynamic forces often play a central role in driving transport processes taking place in such systems. This review focuses on diffusiophoresis, a phoretic transport phenomenon driven by chemical gradients. We begin by revisiting the fundamental physicochemical hydrodynamics governing the transport. Then we discuss diffusiophoresis arising in flow systems found in natural and artificial settings. By exploring various scenarios where chemical gradients are encountered and exploited, we aim to demonstrate the significance of diffusiophoresis and its state-of-the-art development in technological applications.
more »
« less
- Award ID(s):
- 2237177
- PAR ID:
- 10627803
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Fluid Mechanics
- Volume:
- 57
- Issue:
- 1
- ISSN:
- 0066-4189
- Page Range / eLocation ID:
- 227 to 255
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Diffusiophoresis: a novel transport mechanism - fundamentals, applications, and future opportunitiesDiffusiophoresis involves the movement of colloidal-scale entities in response to concentration gradients of a solute. It is broadly categorized into two types: passive and active diffusiophoresis. In passive diffusiophoresis, external concentration gradients drive the motion, while in active diffusiophoresis, the colloidal entity itself assists in generating the gradients. In this perspective, we delve into the fundamental processes underlying passive and active diffusiophoresis and emphasize how prevalent both kinds of diffusiophoresis are in colloidal and natural systems. In particular, we highlight the colloidal focusing feature in passive diffusiophoresis and discuss how it underpins the variety of experimental observations and applications such as low-cost zetasizers, water filtration, and biological pattern formation. For active diffusiophoresis, we emphasize the dependence of particle trajectory on its shape and surface heterogeneity, and discuss how this dictates the applications such as drug delivery, removal of microplastics, and self-repairing materials. Finally, we offer insights and ideas regarding future opportunities in diffusiophoresis.more » « less
-
Diffusiophoresis is the spontaneous movement of colloidal particles in a concentration gradient of solutes. As a small-scale phenomenon that harnesses energy from concentration gradients, diffusiophoresis may prove useful for passively manipulating particles in lab-on-a-chip applications as well as configurations involving interfaces. Though naturally occurring ions are often multivalent, experimental studies of diffusiophoresis have been mostly limited to monovalent electrolytes. In this work, we investigate the motion of negatively charged polystyrene particles in one-dimensional salt gradients for a variety of multivalent electrolytes. We develop a one-dimensional model and obtain good agreement between our experimental and modeling results with no fitting parameters. Our results indicate that the ambipolar diffusivity, which is dependent on the valence combination of cations and anions, dictates the speed of the diffusiophoretic motion of the particles by controlling the time scale at which the electrolyte concentration evolves. In addition, the ion valences also modify the electrophoretic and chemiphoretic contributions to the diffusiophoretic mobility of the particles. Our results are applicable to systems where the chemical concentration gradient is comprised of multivalent ions, and motivate future research to manipulate particles by exploiting ion valence.more » « less
-
Hypothesis Through a large parameter space, electric fields can tune colloidal interactions and forces leading to diverse static and dynamical structures. So far, however, field-driven interactions have been limited to dipole-dipole and hydrodynamic contributions. Nonetheless, in this work, we propose that under the right conditions, electric fields can also induce interactions based on local chemical fields and diffusiophoretic flows. Experiments Herein, we present a strategy to generate and measure 3D chemical gradients under electric fields. In this approach, faradaic reactions at electrodes induce global pH gradients that drive long-range transport through electrodiffusiophoresis. Simultaneously, the electric field induces local pH gradients by driving the particle's double layer far from equilibrium. Findings As a result, while global pH gradients lead to 2D focusing away from electrodes, local pH gradients induce aggregation in the third dimension. Evidence points to a mechanism of interaction based on diffusiophoresis. Interparticle interactions display a strong dependence on surface chemistry, zeta potential and diameter of particles. Furthermore, pH gradients can be readily tuned by adjusting the voltage and frequency of the electric field. For large Péclet numbers, we observed a collective chemotactic-like collapse of particles. Remarkably, such collapse occurs without reactions at a particle's surface. By mixing particles with different sizes, we also demonstrate, through experiments and Brownian dynamics simulations, the emergence of non-reciprocal interactions, where small particles are more drawn towards large ones.more » « less
-
We explore the consequences of micelle formation for diffusiophoresis of charged colloidal particles in ionic surfactant concentration gradients, using a quasi-chemical association model for surfactant self assembly. The electrophoretic contribution to diffusiophoresis is determined by re-arranging the Nernst–Planck equations, and the chemiphoretic contribution is estimated by making plausible approximations for the density profiles in the electrical double layer surrounding the particle. For sub-micellar solutions we find that a particle will typically be propelled down the concentration gradient, although electrophoresis and chemiphoresis are finely balanced and the effect is sensitive to the detailed parameter choices and simplifying assumptions in the model. Above the critical micelle concentration (CMC), diffusiophoresis becomes much weaker and may even reverse sign, due to the fact that added surfactant goes into building micelles and not augmenting the monomer or counterion concentrations. We present detailed calculations for sodium dodecyl sulfate (SDS), finding that the typical drift speed for a colloidal particle in a ∼100 μm length scale SDS gradient is ∼1 μm s −1 below the CMC, falling to ≲0.2 μm s −1 above the CMC. These predictions are broadly in agreement with recent experimental work.more » « less
An official website of the United States government
