The versatile functions of fluorescent proteins (FPs) as fluorescence biomarkers depend on their intrinsic chromophores interacting with the protein environment. Besides X-ray crystallography, vibrational spectroscopy represents a highly valuable tool for characterizing the chromophore structure and revealing the roles of chromophore–environment interactions. In this work, we aim to benchmark the ground-state vibrational signatures of a series of FPs with emission colors spanning from green, yellow, orange, to red, as well as the solvated model chromophores for some of these FPs, using wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in conjunction with quantum calculations. We systematically analyzed and discussed four factors underlying the vibrational properties of FP chromophores: sidechain structure, conjugation structure, chromophore conformation, and the protein environment. A prominent bond-stretching mode characteristic of the quinoidal resonance structure is found to be conserved in most FPs and model chromophores investigated, which can be used as a vibrational marker to interpret chromophore–environment interactions and structural effects on the electronic properties of the chromophore. The fundamental insights gained for these light-sensing units (e.g., protein active sites) substantiate the unique and powerful capability of wavelength-tunable FSRS in delineating FP chromophore properties with high sensitivity and resolution in solution and protein matrices. The comprehensive characterization for various FPs across a colorful palette could also serve as a solid foundation for future spectroscopic studies and the rational engineering of FPs with diverse and improved functions. 
                        more » 
                        « less   
                    This content will become publicly available on August 12, 2026
                            
                            A twisted chromophore powers a turn-on fluorescent protein chloride sensor
                        
                    
    
            Fluorescent proteins (FPs) are noninvasive genetically encodable probes that have revolutionized bioimaging and health fields with vivid images and an ever-growing repertoire from jellyfish to sea anemones and corals. Inside the protein matrix, chromophore nonplanarity and flexibility have long been argued to govern the fluorescence efficiency of FPs, yet their fundamental roles and relative importance have been elusive which hinder the rational design of versatile FPs and biosensors. Herein, we tackle this central question by investigating two recently engineered FP-based turn-on chloride (Cl–) sensors, ChlorON1 and 3, using an ultrafast electronic and vibrational spectroscopic toolset together with advanced multireference simulations for both structure and spectrum. We elucidate that fluorescence enhancement of the chloride-bound ChlorON3 stems from a substantially more twisted chromophore than ChlorON1 via comprehensive simulations starting from the available crystal structure of parent protein (mNeonGreen), also featuring an enhanced radiative pathway due to an adjacent leucine residue in the emissive population. This finding indicates that the commonly stated chromophore planarity is not, but conformational rigidity is, the decisive factor for high fluorescence efficiency. Such mechanistic insights into FPs are generalizable to chromoproteins and other photosensitive biomolecules, which can facilitate the targeted design of brighter and/or tunable biosensors. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10627856
- Publisher / Repository:
- PNAS
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 122
- Issue:
- 32
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- e2508094122
- Subject(s) / Keyword(s):
- fluorescent protein-based biosensors structural dynamics rigidity control ultrafast laser spectroscopy rational protein design BIOPHYSICS AND COMPUTATIONAL BIOLOGY CHEMISTRY
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Natural and laboratory-guided evolution has created a rich diversity of fluorescent protein (FP)-based sensors for chloride (Cl − ). To date, such sensors have been limited to the Aequorea victoria green fluorescent protein (avGFP) family, and fusions with other FPs have unlocked ratiometric imaging applications. Recently, we identified the yellow fluorescent protein from jellyfish Phialidium sp. (phiYFP) as a fluorescent turn-on, self-ratiometric Cl − sensor. To elucidate its working mechanism as a rare example of a single FP with this capability, we tracked the excited-state dynamics of phiYFP using femtosecond transient absorption (fs-TA) spectroscopy and target analysis. The photoexcited neutral chromophore undergoes bifurcated pathways with the twisting-motion-induced nonradiative decay and barrierless excited-state proton transfer. The latter pathway yields a weakly fluorescent anionic intermediate , followed by the formation of a red-shifted fluorescent state that enables the ratiometric response on the tens of picoseconds timescale. The redshift results from the optimized π–π stacking between chromophore Y66 and nearby Y203, an ultrafast molecular event. The anion binding leads to an increase of the chromophore p K a and ESPT population, and the hindrance of conversion. The interplay between these two effects determines the turn-on fluorescence response to halides such as Cl − but turn-off response to other anions such as nitrate as governed by different binding affinities. These deep mechanistic insights lay the foundation for guiding the targeted engineering of phiYFP and its derivatives for ratiometric imaging of cellular chloride with high selectivity.more » « less
- 
            Abstract Fluorescence‐activating proteins (FAPs) that bind a chromophore and activate its fluorescence have gained popularity in bioimaging. The fluorescence‐activating and absorption‐shifting tag (FAST) is a light‐weight FAP that enables fast reversible fluorogen binding, thus advancing multiplex and super‐resolution imaging. However, the rational design of FAST‐specific fluorogens with large fluorescence enhancement (FE) remains challenging. Herein, a new fluorogen directly engineered from green fluorescent protein (GFP) chromophore by a unique double‐donor‐one‐acceptor strategy, which exhibits an over 550‐fold FE upon FAST binding and a high extinction coefficient of approximately 100,000 M−1 cm−1, is reported. Correlation analysis of the excited state nonradiative decay rates and environmental factors reveal that the large FE is caused by nonpolar protein−fluorogen interactions. Our deep insights into structure‐function relationships could guide the rational design of bright fluorogens for live‐cell imaging with extended spectral properties such as redder emissions.more » « less
- 
            Fluorescent proteins (FPs) are indispensable tools for noninvasive bioimaging and sensing. Measuring the free cellular calcium (Ca2+) concentrations in vivo with genetically encodable FPs can be a relatively direct measure of neuronal activity due to the complex signaling role of these ions. REX-GECO1 is a recently developed red-green emission and excitation ratiometric FP-based biosensor that achieves a high dynamic range due to differences in the chromophore response to light excitation with and without calcium ions. Using steady-state electronic measurements (UV/Visible absorption and emission), along with time-resolved spectroscopic techniques including femtosecond transient absorption (fs-TA) and femtosecond stimulated Raman spectroscopy (FSRS), the potential energy surfaces of these unique biosensors are unveiled with vivid details. The ground-state structural characterization of the Ca2+-free biosensor via FSRS reveals a more spacious protein pocket that allows the chromophore to efficiently twist and reach a dark state. In contrast, the more compressed cavity within the Ca2+-bound biosensor results in a more heterogeneous distribution of chromophore populations that results in multi-step excited state proton transfer (ESPT) pathways on the sub-140 fs, 600 fs, and 3 ps timescales. These results enable rational design strategies to enlarge the spectral separation between the protonated/deprotonated forms and the Stokes shift leading to a larger dynamic range and potentially higher fluorescence quantum yield, which should be broadly applicable to the calcium imaging and biosensor communities.more » « less
- 
            Enhanced green fluorescent protein (EGFP)—one of the most widely applied genetically encoded fluorescent probes—carries the threonine-tyrosine-glycine (TYG) chromophore. EGFP efficiently undergoes green-to-red oxidative photoconversion (“redding”) with electron acceptors. Enhanced yellow fluorescent protein (EYFP), a close EGFP homologue (five amino acid substitutions), has a glycine-tyrosine-glycine (GYG) chromophore and is much less susceptible to redding, requiring halide ions in addition to the oxidants. In this contribution we aim to clarify the role of the first chromophore-forming amino acid in photoinduced behavior of these fluorescent proteins. To that end, we compared photobleaching and redding kinetics of EGFP, EYFP, and their mutants with reciprocally substituted chromophore residues, EGFP-T65G and EYFP-G65T. Measurements showed that T65G mutation significantly increases EGFP photostability and inhibits its excited-state oxidation efficiency. Remarkably, while EYFP-G65T demonstrated highly increased spectral sensitivity to chloride, it is also able to undergo redding chloride-independently. Atomistic calculations reveal that the GYG chromophore has an increased flexibility, which facilitates radiationless relaxation leading to the reduced fluorescence quantum yield in the T65G mutant. The GYG chromophore also has larger oscillator strength as compared to TYG, which leads to a shorter radiative lifetime (i.e., a faster rate of fluorescence). The faster fluorescence rate partially compensates for the loss of quantum efficiency due to radiationless relaxation. The shorter excited-state lifetime of the GYG chromophore is responsible for its increased photostability and resistance to redding. In EYFP and EYFP-G65T, the chromophore is stabilized by π-stacking with Tyr203, which suppresses its twisting motions relative to EGFP.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
