IntroductionWe recently showed that sub-kilohertz electrical stimulation of the afferent somata in the dorsal root ganglia (DRG) reversibly blocks afferent transmission. Here, we further investigated whether similar conduction block can be achieved by stimulating the nerve trunk with electrical peripheral nerve stimulation (ePNS). MethodsWe explored the mechanisms and parameters of conduction block by ePNS via ex vivo single-fiber recordings from two somatic (sciatic and saphenous) and one autonomic (vagal) nerves harvested from mice. Action potentials were evoked on one end of the nerve and recorded on the other end from teased nerve filaments, i.e., single-fiber recordings. ePNS was delivered in the middle of the nerve trunk using a glass suction electrode at frequencies of 5, 10, 50, 100, 500, and 1000 Hz. ResultsSuprathreshold ePNS reversibly blocks axonal neural transmission of both thinly myelinated Aδ-fiber axons and unmyelinated C-fiber axons. ePNS leads to a progressive decrease in conduction velocity (CV) until transmission blockage, suggesting activity-dependent conduction slowing. The blocking efficiency is dependent on the axonal conduction velocity, with Aδ-fibers efficiently blocked by 50–1000 Hz stimulation and C-fibers blocked by 10–50 Hz. The corresponding NEURON simulation of action potential transmission indicates that the disrupted transmembrane sodium and potassium concentration gradients underly the transmission block by the ePNS. DiscussionThe current study provides direct evidence of reversible Aδ- and C-fiber transmission blockage by low-frequency (<100 Hz) electrical stimulation of the nerve trunk, a previously overlooked mechanism that can be harnessed to enhance the therapeutic effect of ePNS in treating neurological disorders. 
                        more » 
                        « less   
                    This content will become publicly available on July 24, 2026
                            
                            Sensory-selective peripheral and neuraxial nerve blockade with 2',6'-pipecolylxylidine
                        
                    
    
            Background.Safe sensory-selective local anesthetics would be a major advance in the management of acute and chronic pain. Here we describe the sensory-selective local anesthetic properties and the toxicity profile of a known metabolite of amino-amide local anesthetics,2',6'-pipecolylxylidine (PPX). Methods.PPX was synthesized and made into its hydrochloride salt. PPX or ropivacaine (ROP) were injected at the sciatic nerve or intrathecally in rats, who then underwent modified hotplate (sensory) testing and weight-bearing (motor) testing. Rats injected with PPX or ROP were assessed for clinical toxicity endpoints. Conduction blockade was studied with single-unit recordings in mice. Biocompatibility was assessed histologically. Results.In male rats, sciatic sensory and motor block from 15 mM ROP lasted ~150 min; sensory nerve block from 30 mM PPX lasted 67.4 ± 17.4 min without motor block. Addition of chemical permeation enhancers to 30 mM PPX abolished sensory selectivity. Intrathecal 15 mM ROP produced sensory and motor block lasting ~15 min; sensory block from 30 mM PPX lasted 24.8 ± 8.7 min without motor block; repeated injection caused continuous sensory-selective block. In female rats, sciatic nerve blocks with ROP were similar to blocks in males, while blocks with PPX were sensory-selective but higher PPX concentrations were required. Ex vivo, 1.5 mM ROP caused reversible block of Aδ and C-fibers; 15 mM PPX blocked Aδ- but not C-fibers. Systemic 39.0 ± 1.8 mg/kg ROP caused severe clinical toxicity; 75.3 ± 3.2 mg/kg PPX caused none. Tissue reaction to PPX was benign, comparable to that of ROP. Conclusions.PPX provides sensory-selective local and neuraxial anesthesia with a good safety profile. The sensory selectivity may be attributable to the particular hydrophilic-hydrophobic balance of PPX. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1844762
- PAR ID:
- 10628345
- Publisher / Repository:
- Ovid
- Date Published:
- Journal Name:
- Anesthesiology
- ISSN:
- 0003-3022
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            INTRODUCTION:The gastrulation brain homeobox (Gbx) genes are essential for patterning and maintenance of neurons along the anteroposterior axis of the developing neural tube. Knockout (ko) of Gbx2 results in neonatal lethality associated with neurological and other defects. To understand pathologies, ko studies are not realistic as gene loss usually results in death before birth. Gbx2 neo/neo mutant mice express 6-10% of the wildtype Gbx2 expression levels. They have milder malformations than ko mice but lack the cerebellar vermis and mandibular division of the trigeminal nerve (3rd division of 5th cranial nerve = V3), among other defects. These Gbx2 neo/neo mutant mice die perinatally as they are unable to suckle due to lack of motor innervation via V3 to the muscles of mastication. Muscle cells develop largely without interaction with their motor nerve. However, the final differentiation of myocytes requires interactions with nerve fibers. Unexpectedly, the muscles of mastication appear normal in Gbx2 neo/neo mutant mice, despite the lack of V3. METHODS:We performed microdissections of neonate wildtype and Gbx2neo/neo mutant mice. Additionally, we embedded mutant and wildtype mouse embryos in paraffin, serial sectioned them (7 μm), stained the sections with Azan staining, and analyzed specimen microscopically. RESULTS:Current analysis of the data to identify where nerve fibers in the muscles of mastication originate is in process. We favor the origin of these fibers from the facial nerve (7th cranial nerve), which has several overlapping territories with the trigeminal nerve. CONCLUSIONS:Muscles require innervation for their final differentiation steps. The loss of a nerve can result in the invasion of another nerve into the territory of the lost one, which rescues muscle differentiation but not muscle function. IACUC Ziermann Med-20-02, Funding NSF #2000005 to Ziermann.more » « less
- 
            IntroductionIntrapleural injections of cholera toxin B conjugated to saporin (CTB-SAP) result in selective respiratory (e.g., phrenic) motor neuron death and mimics aspects of motor neuron disease [(e.g., amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA)], such as breathing deficits. This rodent model allows us to study the impact motor neuron death has on the output of surviving phrenic motor neurons as well as the compensatory mechanisms that are recruited. Microglial density in the phrenic motor nucleus as well as cervical gene expression of markers associated with inflammation (e.g., tumor necrosis factor α; TNF-α) are increased following CTB-SAP-induced phrenic motor neuron death, and ketoprofen (nonsteroidal anti-inflammatory drug) delivery attenuated phrenic long-term facilitation (pLTF) in 7 day (d) CTB-SAP rats but enhanced pLTF in 28d CTB-SAP rats. MethodsHere, we worked to determine the impact of TNF-α in the phrenic motor nucleus by: 1) quantifying TNFR1 (a high affinity transmembrane receptor for TNF-α) expression; 2) investigating astrocytes (glial cells known to release TNF-α) by performing a morphological analysis in the phrenic motor nucleus; and 3) determining whether acute TNFR1 inhibition differentially affects phrenic plasticity over the course of CTB-SAP-induced motor neuron loss by delivering an inhibitor for TNF-α receptor 1 (sTNFR1i) in 7d and 28d male CTB-SAP and control rats. ResultsResults revealed that TNFR1 expression was increased on phrenic motor neurons of 28d CTB-SAP rats (p< 0.05), and that astrocytes were increased and exhibited reactive morphology (consistent with an activated phenotype;p< 0.05) in the phrenic motor nucleus of CTB-SAP rats. Additionally, we found that pLTF was attenuated in 7d CTB-SAP rats but enhanced in 28d CTB-SAP rats (p< 0.05) following intrathecal sTNFR1i delivery. ConclusionThis work suggests that we could harness TNFR1 as a potential therapeutic agent in CTB-SAP rats and patients with respiratory motor neuron disease by increasing compensatory plasticity in surviving neurons to improve phrenic motor neuron function and breathing as well as quality of life. Future studies will focus on microglial and astrocytic cytokine release, the role they play in the differential mechanisms of pLTF utilized by 7d and 28d CTB-SAP rats, and potential therapies that target them.more » « less
- 
            Peripheral nerve modulation via electrical stimulation shows promise for treating several diseases, but current approaches lack selectivity, leading to side effects. Exploring selective neuromodulation with commercially available nerve cuffs is impractical due to their high cost and limited spatial resolution. While custom cuffs reported in the literature achieve high spatial resolutions, they require specialized microfabrication equipment and significant effort to produce even a single design. This inability to rapidly and cost-effectively prototype novel cuff designs impedes research into selective neuromodulation therapies in acute studies. To address this, we developed a reproducible method to easily create multi-channel epineural nerve cuffs for selective fascicular neuromodulation. Leveraging commercial flexible printed circuit (FPC) technology, we created cuffs with high spatial resolution (50 μm) and customizable parameters like electrode size, channel count, and cuff diameter. We designed cuffs to accommodate adult mouse or rat sciatic nerves (300–1500 μm diameter). We coated the electrodes with PEDOT:PSS to improve the charge injection capacity. We demonstrated selective neuromodulation in both rats and mice, achieving preferential activation of the tibialis anterior (TA) and lateral gastrocnemius (LG) muscles. Selectivity was confirmed through micro-computed tomography (μCT) and quantified through a selectivity index. These results demonstrate the potential of this fabrication method for enabling selective neuromodulation studies while significantly reducing production time and costs compared to traditional approaches.more » « less
- 
            null (Ed.)The neuroinflammatory response to peripheral nerve injury is associated with chronic pain and significant changes in the molecular expression profiles of mRNAs in neurons, glia and infiltrating immune cells. Chronic constriction injury (CCI) of the rat sciatic nerve provides an opportunity to mimic neuropathic injury and quantitatively assess behavior and differential gene expression in individual animals. Previously, we have shown that a single intravenous injection of nanoemulsion containing celecoxib (0.24 mg/kg) reduces inflammation of the sciatic nerve and relieves pain-like behavior for up to 6 days. Here, we use this targeted therapy to explore the impact on mRNA expression changes in both pain and pain-relieved states. Sciatic nerve tissue recovered from CCI animals is used to evaluate the mRNA expression profiles utilizing quantitative PCR. We observe mRNA changes consistent with the reduced recruitment of macrophages evident by a reduction in chemokine and cytokine expression. Furthermore, genes associated with adhesion of macrophages, as well as changes in the neuronal and glial mRNAs are observed. Moreover, genes associated with neuropathic pain including Maob, Grin2b/NMDAR2b, TrpV3, IL-6, Cacna1b/Cav2.2, Itgam/Cd11b, Scn9a/Nav1.7, and Tac1 were all found to respond to the celecoxib loaded nanoemulsion during pain relief as compared to those animals that received drug-free vehicle. These results demonstrate that by targeting macrophage production of PGE2 at the site of injury, pain relief includes partial reversal of the gene expression profiles associated with chronic pain.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
