skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Two-stage stochastic fleet and battery sizing with routing optimization for sidewalk delivery robots
The rapidly growing online food delivery (OFD) market presents substantial logistical challenges for last-mile delivery operations. Sidewalk delivery robots (SDRs) have emerged as a promising alternative to on-demand workers, as these compact, box-sized robots efficiently deliver food or groceries over short distances via sidewalks. We propose a two-stage stochastic optimization model for a single-depot SDR system with integrated battery-swapping operations. In the first stage, a continuous approximation (CA) method determines the optimal fleet size and the required number of additional swappable batteries. The second-stage solutions are critical to facilitate the first-stage method. These involve solving a routing problem that incorporates battery-swapping decisions and penalties for late arrivals. To address this, we develop a customized heuristic based on adaptive large neighborhood search (ALNS) to generate high-quality solutions for the second stage. The fitted CA model integrates key factors, including time windows, battery swapping, and pickup-delivery orders. Numerical examples highlight the proposed approach’s efficiency in reducing computational time while maintaining solution accuracy. A case study and sensitivity analysis conducted on Purdue University’s campus illustrate the practical impacts of fleet size and the number of swappable batteries.  more » « less
Award ID(s):
2423908 2423909
PAR ID:
10628424
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Transportation Research Part E: Logistics and Transportation Review
Volume:
201
Issue:
C
ISSN:
1366-5545
Page Range / eLocation ID:
104220
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper presents an algorithmic framework to optimize the operation of an Autonomous Mobility-on-Demand system whereby a centrally controlled fleet of electric self-driving vehicles provides on-demand mobility. In particular, we first present a mixed-integer linear program that captures the joint vehicle coordination and charge scheduling problem, accounting for the battery level of the single vehicles and the energy availability in the power grid. Second, we devise a heuristic algorithm to compute near-optimal solutions in polynomial time. Finally, we apply our algorithm to realistic case studies for Newport Beach, CA. Our results validate the near optimality of our method with respect to the global optimum, whilst suggesting that through vehicle-to-grid operation we can enable a 100% penetration of renewable energy sources and still provide a high-quality mobility service. 
    more » « less
  2. null (Ed.)
    This paper presents an algorithmic framework to optimize the operation of an Autonomous Mobility-on-Demand system whereby a centrally controlled fleet of electric self-driving vehicles provides on-demand mobility. In particular, we first present a mixed-integer linear program that captures the joint vehicle coordination and charge scheduling problem, accounting for the battery level of the single vehicles and the energy availability in the power grid. Second, we devise a heuristic algorithm to compute near-optimal solutions in polynomial time. Finally, we apply our algorithm to realistic case studies for Newport Beach, CA. Our results validate the near optimality of our method with respect to the global optimum, whilst suggesting that through vehicle-to-grid operation we can enable a 100% penetration of renewable energy sources and still provide a high-quality mobility service. 
    more » « less
  3. Ghate, A.; Krishnaiyer, K.; Paynabar, K. (Ed.)
    This study presents a two-stage stochastic aggregate production planning model to determine the optimal renewable generation capacity, production plan, workforce levels, and machine hours that minimize a production system’s operational cost. The model considers various uncertainties, including demand for final products, machine and labor hours available, and renewable power supply. The goal is to evaluate the feasibility of decarbonizing the manufacturing, transportation, and warehousing operations by adopting onsite wind turbines and solar photovoltaics coupled with battery systems assuming the facilities are energy prosumers. First-stage decisions are the siting and sizing of wind and solar generation, battery capacity, production quantities, hours of labor to keep, hire, or layoff, and regular, overtime, and idle machine hours to allocate over the planning horizon. Second-stage recourse actions include storing products in inventory, subcontracting or backorder, purchasing or selling energy to the main grid, and daily charging or discharging energy in the batteries in response to variable generation. Climate analytics performed in San Francisco and Phoenix permit to derive capacity factors for the renewable energy technologies and test their implementation feasibility. Numerical experiments are presented for three instances: island microgrid without batteries, island microgrid with batteries, and grid-tied microgrid for energy prosumer. Results show favorable levelized costs of energy that are equal to USD48.37/MWh, USD64.91/MWh, and USD36.40/MWh, respectively. The model is relevant to manufacturing companies because it can accelerate the transition towards eco-friendly operations through distributed generation. 
    more » « less
  4. IEOM Society (Ed.)
    Fleet maintenance is the process fleet manager utilizes to manage fleet and asset information from acquisition to disposal. It helps the companies reduce costs, improve efficiency and safety. Second Harvest of Metrolina Food Bank (SHMETROLINA) distributed over 70 million pounds of food and household items to approximately 800 partner agencies in 2019. With the critical need for transportation for distribution, a vehicle experiencing downtime will disrupt scheduled routes to partner agencies and increase repair costs for SHMETROLINA. This research developed an interactive dashboard using R shiny to help non-profit food bank fleet managers make informed decisions for effective fleet maintenance operations and support the food bank operations to meet hunger needs. The dashboard consists of the visualizations of the maintenance cost, mileage, and operational cost for individual and fleet vehicles from the data collected by the food bank. 
    more » « less
  5. We present progress on the problem of reconfiguring a 2D arrangement of building material by a cooperative group of robots. These robots must avoid collisions, deadlocks, and are subjected to the constraint of maintaining connectivity of the structure. We develop two reconfiguration methods, one based on spatio-temporal planning, and one based on target swapping, to increase building efficiency. The first method can significantly reduce planning times compared to other multi-robot planners. The second method helps to reduce the amount of time robots spend waiting for paths to be cleared, and the overall distance traveled by the robots. 
    more » « less