skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 2, 2026

Title: Discovery of a Pulsar Wind Nebula Candidate Associated with the Galactic PeVatron 1LHAASO J0343+5254u
Abstract The astronomical origins of the most energetic galactic cosmic rays and gamma rays are still uncertain. X-ray follow-up of candidate “PeVatrons”—systems producing cosmic rays with energies exceeding 1 PeV—can constrain their spatial origin, identify likely counterparts, and test particle emission models. Using ∼120 ks of XMM-Newton observations, we report the discovery of a candidate pulsar wind nebula, a possible counterpart for the LHAASO PeVatron J0343+5254u. This extended source has a power-law X-ray spectrum with spectral index ΓX = 1.9—softer at greater distance from the center—and asymmetric spatial extension out to 2 . We conduct leptonic modeling of the X-ray and gamma-ray radiation from this complex system, showing that a fully leptonic model with elevated IR photon fields can explain the multiwavelength emission from this source, similar to other very high-energy pulsar wind nebulas; excess gamma-ray emissivity not explained by a leptonic model may be due to hadronic interactions in nearby molecular cloud regions, which might also produce detectable astroparticle flux.  more » « less
Award ID(s):
2209419
PAR ID:
10628437
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
983
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report a new CO observation survey of LHAASO J0341+5258, using the Nobeyama Radio Observatory 45-m telescope. LHAASO J0341+5258 is one of the unidentified ultra-high-energy (UHE;E> 100 TeV) gamma-ray sources detected by LHAASO. Our CO observations were conducted in 2024 February and March, with a total observation time of 36 hr, covering the LHAASO source (∼0 . ° 3–0 . ° 5 in radius) and its surrounding area (1° × 1 . ° 5). Within the LHAASO source extent, we identified five compact (<2 pc) molecular clouds at nearby distances (<1–4 kpc). These clouds can serve as proton–proton collision targets, producing hadronic gamma rays via neutral pion decays. Based on the hydrogen densities (700–5000 cm−3) estimated from our CO observations and archived Hidata from the Dominion Radio Astrophysical Observatory survey, we derive the total proton energy ofWp(E> 1 TeV) ∼ 1045erg to account for the gamma-ray flux. One of the molecular clouds appears to be likely associated with an asymptotic giant branch (AGB) star with an extended CO tail, which may indicate some particle acceleration activities. However, the estimated maximum particle energy below 100 TeV makes the AGB-like star unlikely to be a PeVatron site. We conclude that the UHE emission observed in LHAASO J0341+5258 could be due to hadronic interactions between the newly discovered molecular clouds and TeV–PeV protons originating from a distant SNR or due to leptonic emission from a pulsar wind nebula candidate, which is reported in our companion X-ray observation paper. 
    more » « less
  2. Abstract Active galactic nuclei (AGN) are promising candidate sources of high-energy astrophysical neutrinos, since they provide environments rich in matter and photon targets where cosmic-ray interactions may lead to the production of gamma rays and neutrinos. We searched for high-energy neutrino emission from AGN using the Swift-BAT Spectroscopic Survey catalog of hard X-ray sources and 12 yr of IceCube muon track data. First, upon performing a stacked search, no significant emission was found. Second, we searched for neutrinos from a list of 43 candidate sources and found an excess from the direction of two sources, the Seyfert galaxies NGC 1068 and NGC 4151. We observed NGC 1068 at flux ϕ ν μ + ν ¯ μ = 4.0 2 1.52 + 1.58 × 1 0 11 TeV−1cm−2s−1normalized at 1 TeV, with a power-law spectral indexγ= 3.10 0.22 + 0.26 , consistent with previous IceCube results. The observation of a neutrino excess from the direction of NGC 4151 is at a posttrial significance of 2.9σ. If interpreted as an astrophysical signal, the excess observed from NGC 4151 corresponds to a flux ϕ ν μ + ν ¯ μ = 1.5 1 0.81 + 0.99 × 1 0 11 TeV−1cm−2s−1normalized at 1 TeV andγ= 2.83 0.28 + 0.35
    more » « less
  3. Abstract We report an observation of ultrahigh-energy (UHE) gamma rays from the Galactic center (GC) region, using 7 yr of data collected by the High-Altitude Water Cherenkov (HAWC) Observatory. The HAWC data are best described as a point-like source (HAWC J1746-2856) with a power-law spectrum ( d N / d E = ϕ E / 26 TeV γ ), whereγ= −2.88 ± 0.15stat− 0.1sysandϕ= 1.5 × 10−15(TeV cm2s)−1 ± 0.3 stat 0.13 sys + 0.08 sys extending from 6 to 114 TeV. We find no evidence of a spectral cutoff up to 100 TeV using HAWC data. Two known point-like gamma-ray sources are spatially coincident with the HAWC gamma-ray excess: Sgr A* (HESS J1745-290) and the Arc (HESS J1746-285). We subtract the known flux contribution of these point sources from the measured flux of HAWC J1746-2856 to exclude their contamination and show that the excess observed by HAWC remains significant (>5σ), with the spectrum extending to >100 TeV. Our result supports that these detected UHE gamma rays can originate via hadronic interaction of PeV cosmic-ray protons with the dense ambient gas and confirms the presence of a proton PeVatron at the GC. 
    more » « less
  4. Abstract Pulsar halos are regions around middle-aged pulsars extending out to tens of parsecs. The large extent of the halos and well-defined central cosmic-ray accelerators make this new class of Galactic sources an ideal laboratory for studying cosmic-ray transport. LHAASO J0621+3755 is a candidate pulsar halo associated with the middle-aged gamma-ray pulsar PSR J0622+3749. We observed LHAASO J0621+3755 with VERITAS and XMM-Newton in the TeV and X-ray bands, respectively. For this work, we developed a novel background estimation technique for imaging atmospheric Cherenkov telescope observations of such extended sources. No halo emission was detected with VERITAS (0.3–10 TeV) or XMM-Newton (2–7 keV) within 1and 1 0 around PSR J0622+3749, respectively. Combined with the LHAASO Kilometer Square Array (KM2A) and Fermi-LAT data, VERITAS flux upper limits establish a spectral break at  ∼1–10 TeV, a unique feature compared with Geminga, the most studied pulsar halo. We model the gamma-ray spectrum and LHAASO-KM2A surface brightness as inverse Compton emission and find suppressed diffusion around the pulsar, similar to Geminga. A smaller diffusion suppression zone and harder electron injection spectrum than Geminga are necessary to reproduce the spectral cutoff. A magnetic field ≤1μG is required by our XMM-Newton observation and synchrotron spectral modeling, consistent with Geminga. Our findings support slower diffusion and lower magnetic field around pulsar halos than the Galactic averages, hinting at magnetohydrodynamic turbulence around pulsars. Additionally, we report the detection of an X-ray point source spatially coincident with PSR J0622+3749, whose periodicity is consistent with the gamma-ray spin period of 333.2 ms. The soft spectrum of this source suggests a thermal origin. 
    more » « less
  5. Abstract Very-high-energy (0.1–100 TeV) gamma-ray emissions were observed in High-Altitude Water Cherenkov (HAWC) data from the lobes of the microquasar SS 433, making them the first set of astrophysical jets that were resolved at TeV energies. In this work, we update the analysis of SS 433 using 2565 days of data from the HAWC observatory. Our analysis reports the detection of a point-like source in the east lobe at a significance of 6.6σand in the west lobe at a significance of 8.2σ. For each jet lobe, we localize the gamma-ray emission and identify a best-fit position. The locations are close to the X-ray emission sites “e1” and “w1” for the east and west lobes, respectively. We analyze the spectral energy distributions and find that the energy spectra of the lobes are consistent with a simple power lawdN/dE∝Eαwith α = 2.44 0.12 0.04 + 0.13 + 0.04 and α = 2.35 0.11 0.03 + 0.12 + 0.03 for the east and west lobes, respectively. The maximum energy of photons from the east and west lobes reaches 56 TeV and 123 TeV, respectively. We compare our observations to various models and conclude that the very-high-energy gamma-ray emission can be produced by a population of electrons that were efficiently accelerated. 
    more » « less