skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: H-Alpha anomalyzer: An anomaly detector for H-Alpha solar observations using a grid-based approach
Award ID(s):
2433781
PAR ID:
10628511
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
SoftwareX, Elsevier
Date Published:
Journal Name:
SoftwareX
Volume:
30
Issue:
C
ISSN:
2352-7110
Page Range / eLocation ID:
102120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. MAGFiLO is a dataset of manually annotated solar filaments from H-Alpha observations captured by the Global Oscillation Network Group (GONG). This dataset includes over ten thousand annotated filaments, spanning the years 2011 through 2022. Each annotation details one filament's segmentation, minimum bounding box, spine, and magnetic field chirality. MAGFiLO is the first dataset of its size, enabling advanced deep learning models to identify filaments and their features with unprecedented precision. It also provides a testbed for solar physicists interested in large-scale analysis of filaments. 
    more » « less
  2. null (Ed.)
    A bstract In this paper we present a fully-differential calculation for the contributions to the partial widths H → $$ b\overline{b} $$ b b ¯ and H → $$ c\overline{c} $$ c c ¯ that are sensitive to the top quark Yukawa coupling y t to order $$ {\alpha}_s^3 $$ α s 3 . These contributions first enter at order $$ {\alpha}_s^2 $$ α s 2 through terms proportional to y t y q ( q = b, c ). At order $$ {\alpha}_s^3 $$ α s 3 corrections to the mixed terms are present as well as a new contribution proportional to $$ {y}_t^2 $$ y t 2 . Our results retain the mass of the final-state quarks throughout, while the top quark is integrated out resulting in an effective field theory (EFT). Our results are implemented into a Monte Carlo code allowing for the application of arbitrary final-state selection cuts. As an example we present differential distributions for observables in the Higgs boson rest frame using the Durham jet clustering algorithm. We find that the total impact of the top-induced (i.e. EFT) pieces is sensitive to the nature of the final-state cuts, particularly b -tagging and c -tagging requirements. For bottom quarks, the EFT pieces contribute to the total width (and differential distributions) at around the percent level. The impact is much bigger for the H → $$ c\overline{c} $$ c c ¯ channel, with effects as large as 15%. We show however that their impact can be significantly reduced by the application of jet-tagging selection cuts. 
    more » « less