skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 5, 2026

Title: On the Hardness of Fair Allocation Under Ternary Valuations
We study the problem of fair allocation of indivisible items when agents have ternary additive valuations --- each agent values each item at some fixed integer values a, b, or c that are common to all agents. The notions of fairness we consider are max Nash welfare (MNW), when a, b, and c are non-negative, and max egalitarian welfare (MEW). We show that for any distinct non-negative a, b, and c, maximizing Nash welfare is APX-hard --- i.e., the problem does not admit a PTAS unless P = NP. We also show that for any distinct a, b, and c, maximizing egalitarian welfare is APX-hard except for a few cases when b = 0 that admit efficient algorithms. These results make significant progress towards completely characterizing the complexity of computing exact MNW allocations and MEW allocations. En route, we resolve open questions left by prior work regarding the complexity of computing MNW allocations under bivalued valuations, and MEW allocations under ternary mixed manna.  more » « less
Award ID(s):
2327057
PAR ID:
10628532
Author(s) / Creator(s):
; ;
Editor(s):
Vorobeychik, Y; Das, S; Nowe, A
Publisher / Repository:
Sheridan
Date Published:
ISBN:
979-8-4007-1426-9
Format(s):
Medium: X
Location:
Detroit, MI
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of fairly allocating a set of indivisible goods among agents with matroid rank valuations: every good provides a marginal value of 0 or 1 when added to a bundle and valuations are submodular.We present a simple algorithmic framework, calledGeneral Yankee Swap, that can efficiently compute allocations that maximize any justice criterion (or fairness objective) satisfying some mild assumptions. Along with maximizing a justice criterion, General Yankee Swap is guaranteed to maximize utilitarian social welfare, ensure strategyproofness and use at most a quadratic number of valuation queries. We show how General Yankee Swap can be used to compute allocations for five different well-studied justice criteria: (a) Prioritized Lorenz dominance, (b) Maximin fairness, (c) Weighted leximin, (d) Max weighted Nash welfare, and (e) Max weightedp-mean welfare.In particular, this framework provides the first polynomial time algorithms to compute weighted leximin, max weighted Nash welfare and max weightedp-mean welfare allocations for agents with matroid rank valuations. We also extend this framework to the setting of binary chores — items with marginal values -1 or 0 — and similarly show that it can be used to maximize any justice criteria satisfying some mild assumptions. 
    more » « less
  2. The classic house allocation problem is primarily concerned with finding a matching between a set of agents and a set of houses that guarantees some notion of economic efficiency (e.g. utilitarian welfare). While recent works have shifted focus on achieving fairness (e.g. minimizing the number of envious agents), they often come with notable costs on efficiency notions such as utilitarian or egalitarian welfare. We investigate the trade-offs between these welfare measures and several natural fairness measures that rely on the number of envious agents, the total (aggregate) envy of all agents, and maximum total envy of an agent. In particular, by focusing on envy-free allocations, we first show that, should one exist, finding an envy-free allocation with maximum utilitarian or egalitarian welfare is computationally tractable. We highlight a rather stark contrast between utilitarian and egalitarian welfare by showing that finding utilitarian welfare maximizing allocations that minimize the aforementioned fairness measures can be done in polynomial time while their egalitarian counterparts remain intractable (for the most part) even under binary valuations. We complement our theoretical findings by giving insights into the relationship between the different fairness measures and by conducting empirical analysis. 
    more » « less
  3. We analyze the run-time complexity of computing allocations that are both fair and maximize the utilitarian social welfare, defined as the sum of agents’ utilities. We focus on two tractable fairness concepts: envy-freeness up to one item (EF1) and proportionality up to one item (PROP1). We consider two computational problems: (1) Among the utilitarian-maximal allocations, decide whether there exists one that is also fair; (2) among the fair allocations, compute one that maximizes the utilitarian welfare. We show that both problems are strongly NP-hard when the number of agents is variable, and remain NP-hard for a fixed number of agents greater than two. For the special case of two agents, we find that problem (1) is polynomial-time solvable, while problem (2) remains NP-hard. Finally, with a fixed number of agents, we design pseudopolynomial-time algorithms for both problems. We extend our results to the stronger fairness notions envy-freeness up to any item (EFx) and proportionality up to any item (PROPx). 
    more » « less
  4. We study the problem of fair and efficient allocation of a set of indivisible goods to agents with additive valuations using the popular fairness notions of envy-freeness up to one good (EF1) and equitability up to one good (EQ1) in conjunction with Pareto-optimality (PO). There exists a pseudo-polynomial time algorithm to compute an EF1+PO allocation and a non-constructive proof of the existence of allocations that are both EF1 and fractionally Pareto-optimal (fPO), which is a stronger notion than PO. We present a pseudopolynomial time algorithm to compute an EF1+fPO allocation, thereby improving the earlier results. Our techniques also enable us to show that an EQ1+fPO allocation always exists when the values are positive and that it can be computed in pseudo-polynomial time.We also consider the class of k-ary instances where k is a constant, i.e., each agent has at most k different values for the goods. For such instances, we show that an EF1+fPO allocation can be computed in strongly polynomial time. When all values are positive, we show that an EQ1+fPO allocation for such instances can be computed in strongly polynomial time. Next, we consider instances where the number of agents is constant and show that an EF1+PO (likewise, an EQ1+PO) allocation can be computed in polynomial time. These results significantly extend the polynomial-time computability beyond the known cases of binary or identical valuations.We also design a polynomial-time algorithm that computes a Nash welfare maximizing allocation when there are constantly many agents with constant many different values for the goods. Finally, on the complexity side, we show that the problem of computing an EF1+fPO allocation lies in the complexity class PLS. 
    more » « less
  5. The Nash social welfare problem asks for an allocation of indivisible items to agents in order to maximize the geometric mean of agents' valuations. We give an overview of the constant-factor approximation algorithm for the problem when agents have Rado valuations [Garg et al. 2021]. Rado valuations are a common generalization of the assignment (OXS) valuations and weighted matroid rank functions. Our approach also gives the first constant-factor approximation algorithm for the asymmetric Nash social welfare problem under the same valuations, provided that the maximum ratio between the weights is bounded by a constant. 
    more » « less