skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Toward a Consistent Framework for Describing the Free Vibration Modes of the Brain
Abstract Frequency-domain analysis of brain tissue motion has received increased focus in recent years as an approach to describing the response of the brain to impact or vibration sources in the built environment. While researchers in many experimental and numerical studies have sought to identify natural resonant frequencies of the brain, sparse description of the associated vibration modes limits comparison of results between studies. We performed a modal analysis to extract the natural frequencies and associated mode shapes of a finite element (FE) model of the head. The vibration modes were characterized using two-dimensional (2D) plate deformation notation in the basic medical planes. Many of the vibration modes characterized are similar to those found in previous numerical and experimental studies. We propose this characterization method as an approach to increase compatibility of results between studies of brain vibration behavior.  more » « less
Award ID(s):
2049088
PAR ID:
10629026
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Biomechanical Engineering
Volume:
147
Issue:
4
ISSN:
0148-0731
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tensegrity structures have emerged as important components of various engineering structures due to their high stiffness, light weight, and deployable capability. Existing studies on dynamic analyses of tensegrity structures mainly focus on responses of their nodal points while overlook deformations of their cable and strut members. This study aims to propose a non-contact approach for experimental modal analysis of a tensegrity structure to identify its three-dimensional (3D) natural frequencies and full-field mode shapes, which include modes with deformations of its cable and strut members. A 3D scanning laser Doppler vibrometer (SLDV) is used with a mirror for extending its field of view to measure full-field vibration of a three-strut tensegrity column with free boundaries. Tensions and axial stiffnesses of cable members of the tensegrity column are determined using natural frequencies of their transverse and longitudinal modes, respectively, and used to build a numerical model of the tensegrity column for dynamic analysis and model validation purposes. Modal assurance criterion (MAC) values between experimental and numerical mode shapes are used to identify their paired modes. Natural frequencies and mode shapes of the first 15 elastic modes of the tensegrity column are identified from the experiment, which include modes of the overall structure and its cable members. These identified modes can be classified into five mode groups depending on their types. Five modes are paired between experimental and numerical results with MAC values larger than 78%. Differences between natural frequencies of paired modes of the tensegrity column are less than 15%. The non-contact 3D vibration measurement approach presented in this work can measure responses of nodal points, as well as deformations of cable and strut members, of the tensegrity column, and allows accurate estimation of its 3D full-field modal parameters. 
    more » « less
  2. Abstract Tensegrity structures become important components of various engineering structures due to their high stiffness, light weight, and deployable capability. Existing studies on their dynamic analyses mainly focus on responses of their nodal points while overlook deformations of their cable and strut members. This study proposes a non-contact approach for experimental modal analysis of a tensegrity structure to identify its three-dimensional (3D) natural frequencies and full-field mode shapes, which include modes with deformations of its cable and strut members. A 3D scanning laser Doppler vibrometer is used with a mirror for extending its field of view to measure full-field vibration of a novel three-strut metal tensegrity column with free boundaries. Tensions and axial stiffnesses of its cable members are determined using natural frequencies of their transverse and longitudinal modes, respectively, to build its theoretical model for dynamic analysis and model validation purposes. Modal assurance criterion (MAC) values between experimental and theoretical mode shapes are used to identify their paired modes. Modal parameters of the first 15 elastic modes of the tensegrity column identified from the experiment, including those of the overall structure and its cable members, can be classified into five mode groups depending on their types. Modes paired between experimental and theoretical results have MAC values larger than 78%. Differences between natural frequencies of paired modes of the tensegrity column are less than 15%. The proposed non-contact 3D vibration measurement approach allows accurate estimation of 3D full-field modal parameters of the tensegrity column. 
    more » « less
  3. Abstract. Progressive fracturing contributes to structural degradation of natural rock arches and other freestanding rock landforms. However, methods to detect structural changes arising from fracturing are limited, particularly at sites with difficult access and high cultural value, where non-invasive approaches are essential. This study aims to determine how fractures affect the dynamic properties of rock arches, focusing on resonance modes as indicators of structural health conditions. We hypothesize that damage resulting from fracture propagation may influence specific resonance modes that can be identified through ambient vibration modal analysis. We characterized the dynamic properties (i.e., resonance frequencies, damping ratios, and mode shapes) of Hunter Canyon Arch, Utah (USA), using spectral and cross-correlation analyses of data generated from an array of nodal geophones. Results revealed properties of nine resonance modes with frequencies between 1 and 12 Hz. Experimental data were then compared to numerical models with homogeneous and heterogeneous compositions, the latter implementing weak mechanical zones in areas of mapped fractures. All numerical solutions replicated the first two resonance modes of the arch, indicating these modes are insensitive to structural complexity derived from fractures. Meanwhile, heterogenous models with discrete fracture zones succeeded in matching the frequency and shape of one additional higher mode, indicating this mode is sensitive to the presence of fractures and thus most likely to respond to structural change from fracture propagation. An evolutionary crack damage model was then applied to simulate fracture propagation, confirming that only this higher mode is sensitive to structural damage resulting from fracture growth. While examination of fundamental modes is common practice in structural health monitoring studies, our results suggest that analysis of higher-order resonance modes can be more informative for characterizing fracture-driven structural damage. 
    more » « less
  4. null (Ed.)
    Flapping wing deformation influences the aerodynamics of insect flight. This deformation is dictated by the dynamical properties of the insect wing, particularly its vibration spectra and mode shapes. However, researchers have not yet developed artificial insect wings with vibration spectra and mode shapes that are identical to their biological counterparts. The goal of the present work is to develop artificial insect wings that are both isospectral and isomodal with respect to real insect wings. To do so, we characterized hawkmoth Manduca sexta wings using experimental modal analyses. From these results, we created artificial wings using additive manufacturing and heat molding. Between artificial and real wings, the first two natural frequencies differ by 7% and 16% respectively, with differences of 16% and 131% in gains evaluated at those natural frequencies. Vibration modes are similar as well. This work provides a foundation for more advanced wing design moving forward. 
    more » « less
  5. Abstract The dynamic properties of freestanding rock landforms are a function of fundamental material and mechanical parameters, facilitating noninvasive vibration‐based structural assessment. Characterization of resonant frequencies, mode shapes, and damping ratios, however, can be challenging at culturally sensitive geologic features, such as rock arches, where physical access is limited. Using sparse ambient vibration measurements, we describe three resonant modes between 1 and 40 Hz for 17 natural arches in Utah spanning a range of lengths from 3–88 m. Modal polarization data are evaluated to combine field observations with 3‐D numerical models. We find outcrop‐scale elastic moduli vary from 0.8 to 8.0 GPa, correlated with diagenetic processes and identify low damping at all sites. Correlation of dense‐array measurements from one arch validates predictions of simple bending modes and fixed boundary conditions. Our results establish use of sparse ambient resonance measurements for structural assessment and monitoring of arches and similar freestanding geologic features worldwide. 
    more » « less