Abstract Interactive microbial communities are ubiquitous, influencing biogeochemical cycles and host health. One widespread interaction is nutrient exchange, or cross-feeding, wherein metabolites are transferred between microbes. Some cross-fed metabolites, such as vitamins, amino acids, and ammonium (NH4+), are communally valuable and impose a cost on the producer. The mechanisms that enforce cross-feeding of communally valuable metabolites are not fully understood. Previously we engineered a cross-feeding coculture between N2-fixing Rhodopseudomonas palustris and fermentative Escherichia coli. Engineered R. palustris excretes essential nitrogen as NH4+ to E. coli, while E. coli excretes essential carbon as fermentation products to R. palustris. Here, we sought to determine whether a reciprocal cross-feeding relationship would evolve spontaneously in cocultures with wild-type R. palustris, which is not known to excrete NH4+. Indeed, we observed the emergence of NH4+ cross-feeding, but driven by adaptation of E. coli alone. A missense mutation in E. coli NtrC, a regulator of nitrogen scavenging, resulted in constitutive activation of an NH4+ transporter. This activity likely allowed E. coli to subsist on the small amount of leaked NH4+ and better reciprocate through elevated excretion of fermentation products from a larger E. coli population. Our results indicate that enhanced nutrient uptake by recipients, rather than increased excretion by producers, is an underappreciated yet possibly prevalent mechanism by which cross-feeding can emerge.
more »
« less
This content will become publicly available on August 1, 2026
Nutrient-Driven Adaptive Evolution of Foraging Traits Impacts Producer-Grazer Dynamics
Abstract This study investigates the nutrient-driven adaptability of foraging efforts in producer-grazer dynamics. We develop two stoichiometric producer-grazer models: a base model incorporating a fixed energetic cost of feeding and an adaptive model where feeding costs vary over time in response to environmental conditions. By comparing these models, we examine the effects of adaptive foraging strategies on population dynamics. Our adaptive model suggests a potential mechanism for evolutionary rescue, where the population dynamically adjusts to environmental changes, such as fluctuations in food quality, by modifying its feeding strategies. However, when population densities oscillate in predator-prey limit cycles, fast adaptation can lead to very wide amplitude cycles, where populations are in danger of stochastic extinction. Overall, this increases our understanding of the conditions under which nutrient-driven adaptive foraging strategies can yield benefits to grazers.
more »
« less
- Award ID(s):
- 2322102
- PAR ID:
- 10629049
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Bulletin of Mathematical Biology
- Volume:
- 87
- Issue:
- 8
- ISSN:
- 0092-8240
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synopsis Recent studies in group-living species suggest that being a valuable group member (a source of information or other resources) should increase social connectedness. This is because individuals may recognize and associate more with valuable individuals to increase the chances of benefiting from their activity, a process we refer to here as adaptive social plasticity. However, it is still unclear what minimum cognitive abilities are required for animals to alter their social interactions based on the value provided by different group members. We varied the cognitive skills of individuals in an agent-based model and evaluated changes in how access to a food resource impacts an informed agent's social connectedness. We modeled a social foraging scenario in an arena with one food patch, which only one informed individual (i.e., producer) can make accessible. Agents’ movement decisions were driven by three cognitive-based parameters: attention (probability of perceiving successful foragers), preference (probability of following successful foragers), and memory (number of time steps a successful forager was remembered). To understand what combination of these parameters may facilitate adaptive social plasticity, we compared the producer's strength (number of interactions) in a proximity network and the foraging success of non-producers between simulations with different combinations of parameter values. We found that non-zero values of each of our parameters are necessary for increases in producer strength and non-producer foraging success to occur. The largest increases in producer strength were seen at intermediate memory values and high values of attention and preference. Unless foragers were programmed to be able to move directly to the food patch when it was accessible to them, a non-zero value of memory was needed for them to experience an increase in foraging success. Furthermore, relationships between attention, memory, and foraging success were influenced by preference values, with the highest foraging success achieved at low to intermediate values of preference. Our results highlight the necessity of certain cognitive skills for animals to take advantage of the foraging success of their group mates, and scenarios in which rigid following behavior may lead to less beneficial results for foragers. This model lays the groundwork for further investigations into the cognitive and environmental factors expected to influence a feedback process between social connections and the value provided and received by group members.more » « less
-
Abstract ObjectivesAvailability of fruit is an important factor influencing variation in great ape foraging strategies and activity patterns. This study aims to quantify how frugivory influences activity budgets across age‐sex classes of mountain gorillas in Bwindi Impenetrable National Park, Uganda. Materials and methodsDaily proportions of fruit‐feeding and activity budgets were calculated using 6 years of observational data on four habituated groups. We fitted generalized linear mixed models to test for age‐sex differences in the amount of fruit‐feeding, and to test whether these factors influence the proportion of time spent feeding, resting, and traveling. ResultsBwindi mountain gorillas spent on average 15% of feeding time consuming fruit, with monthly variation ranging from 0 to 70%. Greater amounts of fruit‐feeding were associated with more time feeding and traveling, and less time resting. Immatures tended to spend more feeding time on fruit than adults, but less overall time feeding and more time traveling. There were no significant differences in the amount of fruit‐feeding and overall feeding time between adult females and silverback males, despite differences in body size. DiscussionThis study confirms that gorillas are frugivorous, and only the Virunga mountain gorilla population can be characterized as highly folivorous. Along with other frugivorous great apes, Bwindi mountain gorillas alter their activity patterns in response to varying amounts of fruit in their diet. A better understanding of how variable ecological conditions can drive diversity even within a subspecies has important implications for understanding relationships between ecology, body size, and foraging strategies in great apes.more » « less
-
Abstract Plant–animal mutualistic networks sustain terrestrial biodiversity and human food security. Global environmental changes threaten these networks, underscoring the urgency for developing a predictive theory on how networks respond to perturbations. Here, I synthesise theoretical advances towards predicting network structure, dynamics, interaction strengths and responses to perturbations. I find that mathematical models incorporating biological mechanisms of mutualistic interactions provide better predictions of network dynamics. Those mechanisms include trait matching, adaptive foraging, and the dynamic consumption and production of both resources and services provided by mutualisms. Models incorporating species traits better predict the potential structure of networks (fundamental niche), while theory based on the dynamics of species abundances, rewards, foraging preferences and reproductive services can predict the extremely dynamic realised structures of networks, and may successfully predict network responses to perturbations. From a theoretician's standpoint, model development must more realistically represent empirical data on interaction strengths, population dynamics and how these vary with perturbations from global change. From an empiricist's standpoint, theory needs to make specific predictions that can be tested by observation or experiments. Developing models using short‐term empirical data allows models to make longer term predictions of community dynamics. As more longer term data become available, rigorous tests of model predictions will improve.more » « less
-
N/A (Ed.)Organism growth is often determined by multiple resources interdependently. However, growth models based on the Droop cell quota framework have historically been built using threshold formulations, which means they intrinsically involve single-resource limitations. In addition, it is a daunting task to study the global dynamics of these models mathematically, since they employ minimum functions that are non-smooth (not differentiable). To provide an approach to encompass interactions of multiple resources, we propose a multiple-resource limitation growth function based on the Droop cell quota concept and incorporate it into an existing producer–grazer model. The formulation of the producer’s growth rate is based on cell growth process time-tracking, while the grazer’s growth rate is constructed based on optimal limiting nutrient allocation in cell transcription and translation phases. We show that the proposed model captures a wide range of experimental observations, such as the paradox of enrichment, the paradox of energy enrichment, and the paradox of nutrient enrichment. Together, our proposed formulation and the existing threshold formulation provide bounds on the expected growth of an organism. Moreover, the proposed model is mathematically more tractable, since it does not use the minimum functions as in other stoichiometric models.more » « less
An official website of the United States government
