skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Orthomosaics, Digital Surface Models, and Multispectral Image Composites for Arctic Beaver Observation Network (ABON) Sites across Arctic Alaska in August 2024
This dataset contains orthomosaics, digital surface models (DSMs), and multispectral image composites for nine Arctic Beaver Observation Network (ABON) sites surveyed in August 2024. The data were collected to support research on the impacts of beaver engineering on tundra hydrology, vegetation, and permafrost dynamics across Arctic Alaska. Drone-based imagery was acquired using a DJI Mavic 3 Multispectral quadcopter equipped with a DJI D-RTK 2 Mobile Base Station for real-time kinematic (RTK) positioning. At each site, flight missions were conducted at 120 meters (m) above ground level with 80% along-track and 70% across-track overlap, using a nadir-oriented camera (90°) and the hover-and-capture-at-point mode. The resulting products include: (1) (Red, Green, Blue) RGB orthomosaics with a ground sampling distance of 5 centimeters (cm), (2) Digital Surface Models (DSMs) with 10 cm spatial resolution, and (3) multispectral composites (green, red, red edge, near-infrared bands) at 10 cm resolution. Radiometric calibration was performed using images of a MicaSense calibrated reflectance panel, and a Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 3 North. All images were processed in Pix4D Mapper (v. 4.10.0). Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. These high-resolution datasets provide baseline observations of beaver pond morphology and vegetation dynamics, enabling long-term monitoring of ecosystem changes driven by beaver activity in Arctic tundra landscapes.  more » « less
Award ID(s):
2114051
PAR ID:
10629125
Author(s) / Creator(s):
;
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
Arctic Beaver Remote Sensing Tundra
Format(s):
Medium: X Other: text/xml
Sponsoring Org:
National Science Foundation
More Like this
  1. The Arctic Beaver Observation Network (A-BON): Tracking a new disturbance regime project observes beaver engineering across circumarctic treeline and tundra environments during the last half-century by mapping and tracking beaver ponds using remote sensing imagery. Drones are being used to collect baseline data and track beaver dam building and pond evolution over time. This dataset consists of orthomosaic images and digital surface models (DSMs) derived from drone surveys on 02 April and 09 April 2024 for three beaver dam and beaver pond sites (Kotz3, BWest, and BEast) on the Baldwin Peninsula, Alaska. Digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The drone system was flown at 120 meters (m) above ground level (agl) and flight speeds varied from 8-9 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.8.4) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. Elevation information represents the snow-covered surface. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 3 North in Ellipsoid Heights (meters). 
    more » « less
  2. Emergence of beavers as ecosystem engineers in the New Arctic project focuses on establishing field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost. Drones are being used to collect baseline data and track beaver dam building and pond evolution over time. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 04 August 2021 at the Upper Nome River, MP31, site on the Seward Peninsula, Alaska. 248 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 44 hectares (ha). The drone system was flown at 120 meters (m) above ground level (agl) and flight speeds varied from 8-9 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.7.5) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 3 North in Ellipsoid Heights (meters). 
    more » « less
  3. Emergence of beavers as ecosystem engineers in the New Arctic project focuses on establishing field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost. Drones are being used to collect baseline data and track beaver dam building and pond evolution over time. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 13 August 2022 at the South Fork Serpentine River site on the Seward Peninsula, Alaska. 1,424 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 205 hectares (ha). The drone system was flown at 120 meters (m) above ground level (agl) and flight speeds varied from 8-9 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.7.5) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 3 North in Ellipsoid Heights (meters). 
    more » « less
  4. Emergence of beavers as ecosystem engineers in the New Arctic project focuses on establishing field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost. Drones are being used to collect baseline data and track beaver dam building and pond evolution over time. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 31 March 2022 at the South Fork Serpentine River site on the Seward Peninsula, Alaska. 1,072 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 155 hectares (ha). The drone system was flown at 120 meters (m) above ground level (agl) and flight speeds varied from 8-9 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.7.5) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 3 North in Ellipsoid Heights (meters). 
    more » « less
  5. Emergence of beavers as ecosystem engineers in the New Arctic project focuses on establishing field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost. Drones are being used to collect baseline data and track beaver dam building and pond evolution over time. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 15 August 2022 at the Willow Creek site on the Seward Peninsula, Alaska. 1,271 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 200 hectare (ha). The drone system was flown at 120 meter (m) above ground level (agl) and flight speeds varied from 8-9 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.7.5) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 3 North in Ellipsoid Heights (meters). 
    more » « less