skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: Evaluating Potential Gender Bias in Kidney Discard Prediction Leveraging the Deceased Donor Allocation Model
Purpose: The equitable distribution of donor kidneys is crucial to maximizing transplant success rates and addressing disparities in healthcare data. This study examines potential gender bias in the Deceased Donor Organ Allocation Model (DDOA) by using machine learning and AI to analyze its impact on kidney discard decisions to ensure fairness in accordance with medical ethics. Methods: The study employs the Deceased Donor Organ Allocation Model (DDOA) model (https://ddoa.mst.hekademeia.org/#/kidney) to predict the discard probability of deceased donor kidneys using donor characteristic from the OPTN Deceased Donor Dataset (2016-2023). Using the SRTR SAF dictionary, the dataset consists of 18,029 donor records, where gender was assessed for its effect on discard probability. ANOVA and t-test determines whether there is a statistically significant difference between the discard percentages for female and male donors by changing the donor gender data alone. If the p-value obtained from the t-test is less than the significance level (typically 0.05), we reject the null hypothesis and conclude that there is a significant difference. Otherwise, we fail to reject the null hypothesis. Results: Figure 1 visualizes the differences in discard percentages between female and male donor kidneys, with an unbiased allocation system expected to show no difference (i.e., a value of zero). To assess the presence of gender bias, statistical analyses, including t-tests and ANOVA were performed. The t-test comparing female and male kidney discard rates yielded a t-statistic of 29.690228, with a p-value of 3.586956e-189 < 0.05 significance threshold. This result leads to the rejection of the null hypothesis, indicating a significant difference was found between the mean when altering only the donor gender attribute in the DDOA model making it play a significant role in discard decisions. Conclusions: The study highlights that a significant difference was found between the mean by altering only the donor gender attribute, contributing to kidney discard rates in the DDOA model. These findings reinforce the need for greater transparency in organ allocation models and a reconsideration of the demographic criteria used in the evaluation process. Future research should refine algorithms to minimize biases in organ allocation and investigate kidney discard disparities in transplantation.  more » « less
Award ID(s):
2222801
PAR ID:
10629290
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
American Journal of Transplantation
Volume:
25
Issue:
S1
ISSN:
1600-6135
Page Range / eLocation ID:
S367
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Purpose: AI models for kidney transplant acceptance must be rigorously evaluated for bias to ensure equitable healthcare access. This study investigates demographic and clinical biases in the Final Acceptance Model (FAM), a donor-recipient matching deep learning model that complements surgeons’ decision-making process in predicting whether to accept available kidneys for their patients with end of stage renal disorder. Methods: AI models for kidney transplant acceptance must be rigorously evaluated for bias to ensure equitable healthcare access. This study investigates demographic and clinical biases in the Final Acceptance Model (FAM), a donor-recipient matching deep learning model that complements surgeons’ decision-making process in predicting whether to accept available kidneys for their patients with end of stage renal disorder. Results: There is no significant racial bias in the model’s predictions (p=1.0), indicating consistent outcome across all racial combinations between donors and recipients. Gender-related effects as shown in Figure 1, while statistically significant (p=0.008), showed minimal practical impact with mean differences below 1% in prediction probabilities. Significant difference Clinical factors involving diabetes and hypertension showed significant difference (p=4.21e-19). The combined presence of diabetes and hypertension in donors showed the largest effect on predictions (mean difference up to -0.0173, p<0.05), followed by diabetes-only conditions in donors (mean difference up to -0.0166, p<0.05). These variations in clinical factor predictions showed bias against groups with comorbidities. Conclusions: The biases observed in the model highlight the need to improve the algorithm to ensure absolute fairness in prediction. 
    more » « less
  2. null (Ed.)
    Waitlists are often used to ration scarce resources, but the trade‐offs in designing these mechanisms depend on agents' preferences. We study equilibrium allocations under alternative designs for the deceased donor kidney waitlist. We model the decision to accept an organ or wait for a preferable one as an optimal stopping problem and estimate preferences using administrative data from the New York City area. Our estimates show that while some kidney types are desirable for all patients, there is substantial match‐specific heterogeneity in values. We then develop methods to evaluate alternative mechanisms, comparing their effects on patient welfare to an equivalent change in donor supply. Past reforms to the kidney waitlist primarily resulted in redistribution, with similar welfare and organ discard rates to the benchmark first‐come, first‐served mechanism. These mechanisms and other commonly studied theoretical benchmarks remain far from optimal. We design a mechanism that increases patient welfare by the equivalent of an 18.2% increase in donor supply. 
    more » « less
  3. Kidney exchange, where candidates with organ failure trade incompatible but willing donors, is a life-saving alternative to the deceased donor waitlist, which has inadequate supply to meet demand. While fielded kidney exchanges see huge benefit from altruistic kidney donors (who give an organ without a paired needy candidate), a significantly higher medical risk to the donor deters similar altruism with livers. In this paper, we begin by exploring the idea of large-scale liver exchange, and show on demographically accurate data that vetted kidney exchange algorithms can be adapted to clear such an exchange at the nationwide level. We then propose cross-organ donation where kidneys and livers can be bartered for each other. We show theoretically that this multi-organ exchange provides linearly more transplants than running separate kidney and liver exchanges. This linear gain is a product of altruistic kidney donors creating chains that thread through the liver pool; it exists even when only a small but constant portion of the donors on the kidney side of the pool are willing to donate a liver lobe. We support this result experimentally on demographically accurate multi-organ exchanges. We conclude with thoughts regarding the fielding of a nationwide liver or joint liver-kidney exchange from a legal and computational point of view. 
    more » « less
  4. Transplantation provides patients suffering from end-stage kidney disease a better quality of life and long-term survival. However, over 20% of deceased donor kidneys are not utilized and never transplanted. While this is sometimes medically appropriate, this also reflects missed opportunities. We are designing Artificial Intelligence decision support for the kidney offer process to support both demand at the transplant center and supply at the organ procurement organization. This includes (1) developing deep learning models, (2) evaluating the effect of explainable interfaces, (3) improving fairness in the model output, (4) identifying factors that influence adoption decisions, and (5) conducting a randomized control trial using an ecologically valid and realistic simulation platform for behavioral experiments, to estimate the impact on kidney utilization. 
    more » « less
  5. (TSFAM) model, an adaptive human-AI teaming framework designed to enhance hard-to-place kidney acceptance decision-making by integrating transplant surgeons’ individualized expertise with advanced AI analytics (Figure 1). Methods: TSFAM is an innovative solution for complex issues in kidney transplant decision-making support. It employs fuzzy associative memory to capture and codify unique decision-making rules of transplant surgeons. Using the Deceased Donor Organ Assessment (DDOA) and Final Acceptance AI models designed to evaluate hard-to-place kidneys, TSFAM integrates fuzzy logic with deep learning techniques to manage inherent uncertainties in donor organ assessments. Surgeon-specifi c ontologies and membership functions are extracted through interviews. Similar to how a pain scale is used for understanding patients, an ontology ambiguity scale is used to develop surgeon rules (Figure 2). Fuzzy logic captures ambiguity and enables the model to adapt to evolving clinical, environmental, and policy conditions. The structured incorporation of human expertise ensures decision support remains closely aligned with local clinical practices and global best evidence. Results: This novel framework incorporates human expertise into AI decisionmaking tools to support donor organ acceptance in transplantation. Integrating surgeon-defi ned criteria into a robust decision-support tool enhances accuracy and transparency of organ allocation decision-making support. TSFAM bridges the gap between data-driven models and nuanced judgment required in complex clinical scenarios, fostering trust and promoting responsible AI adoption. Conclusions: TSFAM fuses deep learning analytics with subtleties of human expertise for a promising pathway to improve decision-making support in transplant surgery. The framework enhances clinical assessment and sets a precedent for future systems prioritizing human-AI collaboration. Prospective studies will focus on clinical implementation with dynamic interfaces for a more patient-centered, evidencebased model in organ transplantation. The intent is for this approach to be adaptable to individual case scenarios and the diverse needs of key transplant team members 
    more » « less