Study Design.Porcine intervertebral discs (IVDs) were excised and then drilled to simulate degeneration before being electrically stimulated for 21 days while undergoing mechanical loading. The discs were then analyzed for gene expression and morphology to assess regeneration. Objective.The purpose of this study was to investigate the effectiveness of the electrical stimulation of IVD treatment as an early intervention method in halting the progression of degenerative disc disease using an ex-vivo porcine model. Summary of Background Data.Treatments for degenerative disc disease are limited in their efficacy and tend to treat the symptoms of the disease rather than repairing the degenerated disc itself. There is a dire need for an early intervention treatment that not only halts the progression of the disease but contributes to reviving the degenerated disc. Methods.Lumbar IVDs were extracted from a mature pig within 1 hour of death and were drilled with a 1.5 mm bit to simulate degenerative disc disease. Four IVDs at a time were then cultured in a dynamic bioreactor system under mechanical loading for 21 days, two with and two without the electrical stimulation treatment. The IVDs were assessed using histological analysis, magnetic resonance imaging, and quantitative reverse transcriptase polymerase chain reaction to quantify the effectiveness of the treatment on the degenerated discs. Results.IVDs with electrical stimulation treatment exhibited extensive annular regeneration and prevented herniation of the nucleus pulposus (NP). In contrast, the untreated group of IVDs were unable to maintain tissue integrity and exhibited NP herniation through multiple layers of the annulus fibrosus. Gene expression showed an increase of extracellular matrix markers and antiinflammatory cytokine interleukin-4 (IL-4), while decreasing in pro-inflammatory markers and pain markers in electrically stimulated IVDs when compared to the untreated group. Conclusion.The direct electrical stimulation application in NP of damaged IVDs can be a viable option to regenerate damaged NP and annulus fibrosus tissues. 
                        more » 
                        « less   
                    This content will become publicly available on June 1, 2026
                            
                            Complex In Vivo Motion of the Bovine Tail Provides Unique Insights Into Intervertebral Disc Adaptation
                        
                    
    
            ABSTRACT IntroductionThe intervertebral disc (IVD) of the bovine tail is a commonly used research analogue for the human disc at the organ, tissue, and cellular levels. While these tails are subjected to thousands of dynamic motion events daily, little is known about how these motions might induce tissue remodeling, particularly in the outer annulus fibrosus (AF) of IVDs connecting adjacent vertebrae. This study hypothesized that despite the similarities in geometry and biochemical composition of IVDs in the bovine tail, level‐wise variations in repetitive in‐vivo motion would be associated with tissue level adaptations. MethodsIn‐vivo active range of motion (RoM) was measured by placing inertial measurement unit sensors on the tails of adult cows and using a multi‐segment rigid body model to calculate level‐wise flexion‐extension and lateral bending angles. Level‐wise passive RoM was measured from cadaveric adult bovine tails in flexion, extension, and lateral bending with skin and muscles removed. IVDs were extracted for measurement of height, diameters, AF radial thicknesses, and AF fiber crimp periods. ResultsIn‐vivo joint RoM was found to vary drastically by level, largely due to a prominent second order mode with inflection point at the fourth joint. Joint levels near this inflection point were found to have the highest passive RoMs. In the proximal tail, decreased RoM was associated with an increased fiber crimp period in the outer AF, while in the distal tail it was associated with increased AF thickness. DiscussionTaken together, these findings suggest that IVDs in the bovine tail respond to repeated complex dynamic motions through a process of adaptation at the mesoscale (AF thickening during growth) and microscale (residual strain accumulation in the mature state). The bovine tail thus provides a powerful tool for modeling how the human lumbar intervertebral disc may remodel in response to changes in exposure to repetitive motions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2138342
- PAR ID:
- 10629294
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- JOR SPINE
- Volume:
- 8
- Issue:
- 2
- ISSN:
- 2572-1143
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            BackgroundWater content is a key parameter for simulating tissue swelling and nutrient diffusion. Accurately measuring water content throughout the intervertebral disc (NP = nucleus pulposus; AF = annulus fibrosus) is important for developing patient‐specific models. Water content is measured using destructive techniques, Quantitative MRI has been used to estimate water content and detect early degeneration, but it is dependent on scan parameters, concentration of free water molecules, and fiber architecture. PurposeTo directly measure disc‐tissue water content using quantitative MRI and compare MRI‐based measurements with biochemical assays, and to quantify changes in disc geometry due to compression. Study TypeBasic science, controlled. SpecimenTwenty bone‐disc‐bone motion segments from skeletally mature bovines. Field Strength/Sequence7T/3D fast low angle shot (FLASH) pulse sequence and a T2rapid imaging with refocused echoes (RARE) sequence. AssessmentDisc volumes, NP and AF volumetric water content, and T2relaxation times were measured through MRI; NP and AF tissue gravimetric water content, mass density, and glycosaminoglycan content were measured through a biochemical assay. Statistical TestsCorrelations between MRI‐based measurement and biochemical composition were evaluated using Pearson's linear regression. ResultsMechanical dehydration resulted in a decrease in disc volume by up to 20% and a decrease in disc height by up to 35%. Direct water content measurements for the NP was achieved by normalizing MRI‐based spin density by NP mass density (1.10 ± 0.03 g/cm3). However, the same approach underestimated water content in the AF by ~10%, which may be due to a higher concentration of collagen fibers and bound water molecules. Data ConclusionSpin density or spin density normalized by mass density to estimate NP and AF water content was more accurate than correlations between water content and relaxation times. Mechanical dehydration decreased disc volume and disc height, and increased maximum cross‐sectional area. Level of Evidence Technical Efficacy Stage J. Magn. Reson. Imaging 2020;52:1152–1162.more » « less
- 
            Study DesignFinite element (FE) study. ObjectivePedicle subtraction osteotomy (PSO) is a surgical method to correct sagittal plane deformities. In this study, we aimed to investigate the biomechanical effects of lumbar disc degeneration on the instrumentation following PSO and assess the effects of using interbody spacers adjacent to the PSO level in a long instrumented spinal construct. MethodsA spinopelvic model (T10-pelvis) with PSO at the L3 level was used to generate 3 different simplified grades of degenerated lumbar discs (mild (Pfirrmann grade III), moderate (Pfirrmann grade IV), and severe (Pfirrmann grade V)). Instrumentation included eighteen pedicle screws and bilateral primary rods. To investigate the effect of interbody spacers, the model with normal disc height was modified to accommodate 2 interbody spacers adjacent to the PSO level through a lateral approach. For the models, the rods’ stress distribution, PSO site force values, and the spine range of motion (ROM) were recorded. ResultsThe mildly, moderately, and severely degenerated models indicated approximately 10%, 26%, and 40% decrease in flexion/extension motion, respectively. Supplementing the instrumented spinopelvic PSO model using interbody spacers reduced the ROM by 22%, 21%, 4%, and 11% in flexion, extension, lateral bending, and axial rotation, respectively. The FE results illustrated lower von Mises stress on the rods and higher forces at the PSO site at higher degeneration grades and while using the interbody spacers. ConclusionsLarger and less degenerated discs adjacent to the PSO site may warrant consideration for interbody cage instrumentation to decrease the risk of rod fracture and PSO site non-union.more » « less
- 
            Lower back pain commonly arises from intervertebral disc (IVD) failure, often caused by deteriorating annulus fibrosus (AF) and/or nucleus pulposus (NP) tissue. High socioeconomic cost, quality of life issues, and unsatisfactory surgical options motivate the rapid development of non-invasive, regenerative repair strategies for lower back pain. This study aims to evaluate the AF regenerative capacity of injectable matrix repair strategy in ex vivo porcine organ culturing using collagen type-I and polycaprolactone nanofibers (PNCOL) with encapsulated fibroblast cells. Upon 14 days organ culturing, the porcine IVDs were assessed using gross optical imaging, magnetic resonance imaging (MRI), histological analysis, and Reverse Transcriptase quantitative PCR (RT-qPCR) to determine the regenerative capabilities of the PNCOL matrix at the AF injury. PNCOL-treated AF defects demonstrated a full recovery with increased gene expressions of AF extracellular matrix markers, including Collagen-I, Aggrecan, Scleraxis, and Tenascin, along with anti-inflammatory markers such as CD206 and IL10. The PNCOL treatment effectively regenerates the AF tissue at the injury site contributing to decreased herniation risk and improved surgical outcomes, thus providing effective non-invasive strategies for treating IVD injuries.more » « less
- 
            IntroductionThe correlation between cervical alignment and clinical outcome of total disc replacement (TDR) surgery is arguable. We believe that this conflict exists because the parameters that influence the biomechanics of the cervical spine are not well understood, specifically the effect of TDR on different cervical alignments. Methods:A validated osseo-ligamentous model from C2-C7 was used in this study. The C2-C7 Cobb angle of the base model was modified to represent: lordotic (−10°), straight (0°), and kyphotic (+10°) cervical alignment. The TDR surgery was simulated at the C5-C6 segment. The range of motion (ROM), intradiscal pressure, annular stresses, and facet loads were computed for all the models. Results:The ROM results demonstrated kyphotic alignment after TDR surgery to be the most mobile when compared to intact base model (41% higher in flexion–extension, 51% higher in lateral bending, and 27% higher in axial rotation) followed by straight and lordotic alignment, respectively. The annular stresses for the kyphotic alignment when compared to intact base model were higher at the index level (33% higher in flexion–extension and 48% higher in lateral bending) compared to other alignments. The lordotic model demonstrated higher facet contact forces at the index level (75% higher in extension than kyphotic alignment, 51% higher in lateral bending than kyphotic alignment, and 78% higher in axial rotation than kyphotic alignment) when compared among the three alignment models. Conclusion:Preoperative cervical alignment should be an integral part of surgical planning for TDR surgery as different cervical alignments may significantly alter the postsurgical outcomes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
