skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Do differences in exploration and boldness inform species level responses to environmental change in montane chipmunks?
How animals behave in novel situations may significantly affect multiple aspects of their biology, including how they respond to environmental change. Two aspects of behaviour that are often used to assess interactions with new environments are exploration and boldness. Within species, variation in these responses to novelty is thought to reflect differences in individual behavioural phenotypes (e.g. behavioural syndromes). Between species, these responses may be influenced by the degree of ecological specialization, with members of more specialized taxa typically expected to display a reduced tendency to interact with novel habitats. To test the prediction that more ecologically specialized species are more neophobic, we used open-field assays to compare exploratory behaviour and boldness among free-living members of two partially sympatric species of chipmunks from the Sierra Nevada Mountains of California, U.S.A.: the lodgepole chipmunk, Tamias speciosus, a habitat generalist, and the alpine chipmunk, Tamias alpinus, a habitat specialist. Our analyses indicate that while behavioural measures of boldness did not differ between these species, individual T. speciosus were on average more exploratory than individual T. alpinus. Although the number of individuals tested per species was limited, these findings have important implications for understanding reported interspecific differences in elevational range shifts in response to changing environmental conditions in the Sierra Nevada. More generally, our analyses underscore the potential importance of behavioural responses to novelty in shaping species level patterns of response to environmental change.  more » « less
Award ID(s):
2305665
PAR ID:
10629471
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Animal Behaviour
Volume:
224
Issue:
C
ISSN:
0003-3472
Page Range / eLocation ID:
123159
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Colour polymorphic species often exhibit variation in morphology, physiology, and behaviour among morphs. In particular, dominance status may be signalled by the interaction between behaviour and colour morph. Behavioural traits associated with dominance include boldness, exploration, and aggression, which influence access to preferred habitat, territorial defence, and mate acquisition. In ectotherms, the social structure associated with morphs may result in the exploitation of structural niches differing in thermal quality. Hence, social interactions among morphs may generate concordant variation in thermal preference and environmental temperature. However, few studies have assessed thermal preference variation in colour polymorphic species and its covariation with behaviour. Doing so can provide insight into niche specialization and the maintenance of colour polymorphism in populations. Here, we investigated the patterns of covariation in boldness behaviour, exploratory behaviour, and thermal preference in the tree lizard,Urosaurus ornatus. We assessed trait variation between territorial and non‐territorial male morphs and between orange and yellow female morphs. Boldness and exploratory behaviour were repeatable in maleU. ornatusand bolder individuals were significantly more likely to incur tail loss, a potential consequence of bold behaviour. Territorial male morphs were significantly bolder and more exploratory and preferred higher body temperatures with a narrowerTsetthan non‐territorial morphs. Female morphs did not vary in behavioural or thermal traits. This study highlights behavioural mechanisms that underly ecological niche segregation and variable habitat use between morphs in a colour polymorphic species. 
    more » « less
  2. Kubatko, Laura (Ed.)
    Abstract Evidence from natural systems suggests that hybridization between animal species is more common than traditionally thought, but the overall contribution of introgression to standing genetic variation within species remains unclear for most animal systems. Here, we use targeted exon capture to sequence thousands of nuclear loci and complete mitochondrial genomes from closely related chipmunk species in the Tamias quadrivittatus group that are distributed across the Great Basin and the central and southern Rocky Mountains of North America. This recent radiation includes six overlapping, ecologically distinct species (Tamias canipes, Tamias cinereicollis, Tamias dorsalis, T. quadrivittatus, Tamias rufus, and Tamias umbrinus) that show evidence for widespread introgression across species boundaries. Such evidence has historically been derived from a handful of markers, typically focused on mitochondrial loci, to describe patterns of introgression; consequently, the extent of introgression of nuclear genes is less well characterized. We conducted a series of phylogenomic and species-tree analyses to resolve the phylogeny of six species in this group. In addition, we performed several population-genomic analyses to characterize nuclear genomes and infer coancestry among individuals. Furthermore, we used emerging quartets-based approaches to simultaneously infer the species tree (SVDquartets) and identify introgression (HyDe). We found that, in spite of rampant introgression of mitochondrial genomes between some species pairs (and sometimes involving up to three species), there appears to be little to no evidence for nuclear introgression. These findings mirror other genomic results where complete mitochondrial capture has occurred between chipmunk species in the absence of appreciable nuclear gene flow. The underlying causes of recurrent massive cytonuclear discordance remain unresolved in this group but mitochondrial DNA appears highly misleading of population histories as a whole. Collectively, it appears that chipmunk species boundaries are largely impermeable to nuclear gene flow and that hybridization, while pervasive with respect to mtDNA, has likely played a relatively minor role in the evolutionary history of this group. [Cytonuclear discordance; hyridization; introgression, phylogenomics; SVDquartets; Tamias.] 
    more » « less
  3. Sucking lice are obligate parasites of eutherian mammals and are generally considered to be host-specific parasites. Molecular investigations have found that some current louse taxonomy is incorrect and does not reflect the relationships among families and species. Western chipmunks (23 species of Tamias) and the eastern chipmunk (Tamias striatus) are infested by 2 different species of Hoplopleura sucking lice, Hoplopleura arboricola and Hoplopleura erratica. Hoplopleura arboricola has been found on 19 of 23 western chipmunk species, and H. erratica has only been recorded as a parasite of T. striatus. We investigated the relationships between these chipmunk lice and louse systematic status by supplementing published sequence data with additional sequences and morphological examinations. We estimated phylogenetic relationships using 1,107 coding loci in a maximum-likelihood framework and a species tree approach. In addition to the phylogeny, we calculated raw pairwise distances of the cytochrome oxidase subunit 1 gene (COI) between clades. Both phylogenetic approaches recovered 2 well-supported clades of H. arboricola, 1 of which included H. erratica, suggesting that the 2 louse species are not distinct. Further, examination of louse specimens found no morphological traits that distinguish lice from any of the lineages, including differentiating H. erratica from H. arboricola. The average pairwise distance of COI sequences between the 2 major H. arboricola clades exceeded that of the distances between H. erratica and either of the H. arboricola clades. Based on the genetic similarities and phylogenetic relationships of the lice, it appears that an ancestral louse was associated with western chipmunks and then transferred to the eastern chipmunk. Using the phylogenetic and morphological evidence presented here, Hoplopleura arboricolaKellogg and Ferris, 1915 is relegated to a junior subjective synonym of Hoplopleura erratica (Osborn, 1896). A holotype from the type series is designated for H. erratica. These results suggest a history of chipmunk host species interactions that enabled ectoparasites to disperse between chipmunk species and illustrate the importance of phylogenomic analyses to study species interactions and the history of interspecific associations. 
    more » « less
  4. Consistent individual differences in behavior (“animal personality”) have consequences for individual fitness, evolutionary trajectories, and species’ persistence. Such differences have been documented across a wide range of animals, though amphibians are generally underrepresented in this research area. The aim of our study was to examine consistent individual differences in Dyeing poison frogs, Dendrobates tinctorius. We evaluated repeatability in activity, exploration, and boldness to assess consistency of behaviors across different temporal, experimental, and environmental contexts. We found repeatability in activity and exploration across time and contexts. In contrast, we observed context-specific behavior for our metrics of boldness, with consistent individual differences only for some measures. Further, while activity and exploration displayed consistent correlations across contexts, relationships between activity and boldness were context dependent. Our findings document the presence of consistent individual differences in behavior in D. tinctorius poison frogs, and also reveal context-dependent behavioral differences, highlighting the complex relationship between consistent individual differences and context-specific responses in animal behavior. 
    more » « less
  5. Abstract Understanding the factors that govern variation in genetic structure across species is key to the study of speciation and population genetics. Genetic structure has been linked to several aspects of life history, such as foraging strategy, habitat association, migration distance, and dispersal ability, all of which might influence dispersal and gene flow. Comparative studies of population genetic data from species with differing life histories provide opportunities to tease apart the role of dispersal in shaping gene flow and population genetic structure. Here, we examine population genetic data from sets of bird species specialized on a series of Amazonian habitat types hypothesized to filter for species with dramatically different dispersal abilities: stable upland forest, dynamic floodplain forest, and highly dynamic riverine islands. Using genome‐wide markers, we show that habitat type has a significant effect on population genetic structure, with species in upland forest, floodplain forest, and riverine islands exhibiting progressively lower levels of structure. Although morphological traits used as proxies for individual‐level dispersal ability did not explain this pattern, population genetic measures of gene flow are elevated in species from more dynamic riverine habitats. Our results suggest that the habitat in which a species occurs drives the degree of population genetic structuring via its impact on long‐term fluctuations in levels of gene flow, with species in highly dynamic habitats having particularly elevated gene flow. These differences in genetic variation across taxa specialized in distinct habitats may lead to disparate responses to environmental change or habitat‐specific diversification dynamics over evolutionary time scales. 
    more » « less