skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ion Selectivity of Intercalation Electrodes in Dual-Ion Electrolytes: Modeling Ion Selectivity as the Sum of Individual Cation Effects
Intercalation electrode materials reversibly insert cations into their lattices under applied potentials or currents, which can be used to perform electrochemical separations. Optimizing performance, however, remains challenging due to tradeoffs between selectivity and separation rate being influenced by multiple variables. This study developed a quantitative model to describe the current response and cation selectivity of an intercalation electrode in a binary cation solution during cyclic voltammetry. We hypothesized that current responses and selectivity could be calculated by summing individual ion contributions. Cyclic voltammograms were experimentally measured using nickel hexacyanoferrate electrodes in NaCl, KCl, or mixed solutions. Post-mortem electron probe micro-analysis quantified intercalated Na+and K+fractions. A one-dimensional finite element model incorporating the Nernst-Frumkin isotherm, Butler-Volmer kinetics, and ion diffusion was developed, parameterized with pure NaCl or KCl solutions, and validated against mixed solutions. The model accurately reproduced experimental cyclic voltammograms and ion partitioning behaviors at ionic strengths ≥0.2 mol·l−1. However, at lower ionic strengths, significant discrepancies arose for reasons still unclear. Results indicate that modeling ion contributions individually effectively captures the electrochemical response of selective intercalation electrodes at sufficiently high ionic strengths.  more » « less
Award ID(s):
1749207
PAR ID:
10629525
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
172
Issue:
8
ISSN:
0013-4651
Format(s):
Medium: X Size: Article No. 083505
Size(s):
Article No. 083505
Sponsoring Org:
National Science Foundation
More Like this
  1. Hybrid capacitive deionization (HCDI), which combines a capacitive carbon electrode and a redox active electrode in a single device, has emerged as a promising method for water desalination, enabling higher ion removal capacity than devices containing two carbon electrodes. However, to date, the desalination performance of few redox active materials has been reported. For the first time, we present the electrochemical behavior of manganese oxide nanowires with four different tunnel crystal structures as faradaic electrodes in HCDI cells. Two of these phases are square tunnel structured manganese oxides, α-MnO2 and todorokite-MnO2. The other two phases have novel structures that cross-sectional scanning transmission electron microscopy analysis revealed to have ordered and disordered combinations of structural tunnels with different dimensions. The ion removal performance of the nanowires was evaluated not only in NaCl solution, which is traditionally used in laboratory experiments, but also in KCl and MgCl2 solutions, providing better understanding of the behavior of these materials for desalination of brackish water that contains multiple cation species. High ion removal capacities (as large as 27.8 mg g−1, 44.4 mg g−1, and 43.1 mg g−1 in NaCl, KCl, and MgCl2 solutions, respectively) and high ion removal rates (as large as 0.112 mg g−1 s−1, 0.165 mg g−1 s−1, and 0.164 mg g−1 s−1 in NaCl, KCl, and MgCl2 solutions, respectively) were achieved. By comparing ion removal capacity to structural tunnel size, it was found that smaller tunnels do not favor the removal of cations with larger hydrated radii, and more efficient removal of larger hydrated cations can be achieved by utilizing manganese oxides with larger structural tunnels. Extended HCDI cycling and ex situ X-ray diffraction analysis revealed the excellent stability of the manganese oxide electrodes in repeated ion removal/ion release cycles, and compositional analysis of the electrodes indicated that ion removal is achieved through both surface redox reactions and intercalation of ions into the structural tunnels. This work contributes to the understanding of the behavior of faradaic materials in electrochemical water desalination and elucidates the relationship between the electrode material crystal structure and the ion removal capacity/ion removal rate in various salt solutions. 
    more » « less
  2. Materials that undergo ion-insertion coupled electron transfer are important for energy storage, energy conversion, and optoelectronics applications. Cyclic voltammetry is a powerful technique to understand electrochemical kinetics. However, the interpretation of the kinetic behavior of ion insertion electrodes with analytical solutions developed for ion blocking electrodes has led to confusion about their rate-limiting behavior. The purpose of this manuscript is to demonstrate that the cyclic voltammetry response of thin film electrode materials undergoing solid-solution ion insertion without significant Ohmic polarization can be explained by well-established models for finite diffusion. To do this, we utilize an experimental and simulation approach to understand the kinetics of Li+insertion-coupled electron transfer into a thin film material (Nb2O5). We demonstrate general trends for the peak current vs scan rate behavior, with the latter parameter elevated to an exponent between limiting values of 1 and 0.5, depending on the solid-state diffusion characteristics of the film (diffusion coefficient, film thickness) and the experiment timescale (scan rate). We also show that values < 0.5 are possible depending on the cathodic potential limit. Our results will be useful to fundamentally understand and guide the selection and design of intercalation materials for multiple applications. 
    more » « less
  3. Prussian blue analogs (PBAs) are used as electrode materials in energy storage and water deionization cells due to their reversible cation intercalation capability. Despite extensive research on their performance and intercalation mechanisms, little attention has been given to their behavior under open-circuit conditions. Recent studies using symmetrical PBA electrodes in two electrode deionization cells reported that after constant current cycling in dilute NaCl (<0.2 M), the cell voltage dropped under open-circuit conditions, which substantially increased the amount of energy consumed for deionization. However, it remains unclear which electrode (anode/cathode) experienced potential drift and if it was influenced by the low salinity of the electrolyte. Here, we performed a series of electrochemical experiments under different charging and discharging regimes and electrolyte compositions to determine the processes that contributed most significantly to open-circuit potential drift. The data indicated that charge redistribution within the electrode was the main contributor to open circuit potential drift, with electrode dissolution and parasitic reactions playing negligible roles. A one-dimensional finite element model was constructed to simulate charge redistribution by accounting for cation diffusion under open-circuit conditions. The open-circuit potential profiles generated by the model were validated against experimental trends, confirming the occurrence of charge redistribution. A Monte Carlo analysis of the model was conducted to determine the relationship of potential drift to key factors such as applied current, electrode thickness, diffusion coefficient of intercalating ions, and intercalation capacity. Subsequently, a dimensionless number (Da) was developed based on the Dahmköhler number to relate the extent of potential drift resulting from combinations of these factors. The analyses revealed a strong positive correlation between simulated potential drift andDa. Among the key factors studied here, the diffusion coefficient and applied current had the largest impact onDaand, consequently, on potential drift. 
    more » « less
  4. The electrochemical gradients established across cell membranes are paramount for the execution of biological functions. Besides ion channels, other transporters, such as exogenous pore-forming toxins, may present ionic selectivity upon reconstitution in natural and artificial lipid membranes and contribute to the electrochemical gradients. In this context, we utilized electrophysiology approaches to assess the ionic selectivity of the pore-forming toxin lysenin reconstituted in planar bilayer lipid membranes. The membrane voltages were determined from the reversal potentials recorded upon channel exposure to asymmetrical ionic conditions, and the permeability ratios were calculated from the fit with the Goldman–Hodgkin–Katz equation. Our work shows that lysenin channels are ion-selective and the determined permeability coefficients are cation and anion-species dependent. We also exploited the unique property of lysenin channels to transition to a stable sub-conducting state upon exposure to calcium ions and assessed their subsequent change in ionic selectivity. The observed loss of selectivity was implemented in an electrical model describing the dependency of reversal potentials on calcium concentration. In conclusion, our work demonstrates that this pore-forming toxin presents ionic selectivity but this is adjusted by the particular conduction state of the channels. 
    more » « less
  5. Abstract Si‐based anodes with a stiff diamond structure usually suffer from sluggish lithiation/delithiation reaction due to low Li‐ion and electronic conductivity. Here, a novel ternary compound ZnSi2P3with a cation‐disordered sphalerite structure, prepared by a facile mechanochemical method, is reported, demonstrating faster Li‐ion and electron transport and greater tolerance to volume change during cycling than the existing Si‐based anodes. A composite electrode consisting of ZnSi2P3and carbon achieves a high initial Coulombic efficiency (92%) and excellent rate capability (950 mAh g−1at 10 A g−1) while maintaining superior cycling stability (1955 mAh g−1after 500 cycles at 300 mA g−1), surpassing the performance of most Si‐ and P‐based anodes ever reported. The remarkable electrochemical performance is attributed to the sphalerite structure that allows fast ion and electron transport and the reversible Li‐storage mechanism involving intercalation and conversion reactions. Moreover, the cation‐disordered sphalerite structure is flexible to ionic substitutions, allowing extension to a family of Zn(Cu)Si2+xP3solid solution anodes (x= 0, 2, 5, 10) with large capacity, high initial Coulombic efficiency, and tunable working potentials, representing attractive anode candidates for next‐generation, high‐performance, and low‐cost Li‐ion batteries. 
    more » « less