skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Auriga Streams II: orbital properties of tidally disrupting satellites of Milky Way-mass galaxies
ABSTRACT Galaxies like the Milky Way are surrounded by complex populations of satellites at all stages of tidal disruption. In this paper, we present a dynamical study of the disrupting satellite galaxies in the Auriga simulations that are orbiting 28 distinct Milky Way-mass hosts across three resolutions. We find that the satellite galaxy populations are highly disrupted. The majority of satellites that remain fully intact at present day were accreted recently without experiencing more than one pericentre ($$n_{\rm peri} \lesssim 1$$) and have large apocentres ($$r_{\rm apo} \gtrsim 200 \mathrm{\, kpc}$$) and pericentres ($$r_{\rm peri} \gtrsim 50 \mathrm{\, kpc}$$). The remaining satellites have experienced significant tidal disruption and, given full knowledge of the system, would be classified as stellar streams. We find stellar streams in Auriga across the range of pericentres and apocentres of the known Milky Way dwarf galaxy streams and, interestingly, overlapping significantly with the Milky Way intact satellite population. We find no significant change in satellite orbital distributions across resolution. However, we do see substantial halo-to-halo variance of $$(r_\text{peri}, r_\text{apo})$$ distributions across host galaxies, as well as a dependence of satellite orbits on host halo mass–systems disrupt at larger pericentres and apocentres in more massive hosts. Our results suggest that either cosmological simulations (including, but not limited to, Auriga) are disrupting satellites far too readily, or that the Milky Way’s satellites are more disrupted than current imaging surveys have revealed. Future observing facilities and careful mock observations of these systems will be key to revealing the nature of this apparent discrepancy.  more » « less
Award ID(s):
2019786
PAR ID:
10629666
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
542
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 1109-1124
Size(s):
p. 1109-1124
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this work, we study how the abundance and dynamics of populations of disrupting satellite galaxies change systematically as a function of host galaxy properties. We apply a theoretical model of the phase-mixing process to classify intact satellite galaxies and stellar streamlike and shell-like debris in ∼1500 Milky Way–mass systems generated by a semi-analytic galaxy formation code,SatGen. In particular, we test the effect of host galaxy halo mass, disk mass, ratio of disk scale height to length, and stellar feedback model on disrupting satellite populations. We find that the counts of tidal debris are consistent across all host galaxy models, within a given host mass range, and that all models can have streamlike debris on low-energy orbits, consistent with that observed around the Milky Way. However, we find a preference for streamlike debris on lower-energy orbits in models with a thicker (lower-density) host disk or on higher-energy orbits in models with a more massive host disk. Importantly, we observe significant halo-to-halo variance across all models. These results highlight the importance of simulating and observing large samples of Milky Way–mass galaxies and accounting for variations in host properties when using disrupting satellites in studies of near-field cosmology. 
    more » « less
  2. Abstract We present the first detailed comparison of populations of dwarf galaxy stellar streams in cosmological simulations and the Milky Way. In particular, we compare streams identified around 13 Milky Way analogs in the FIRE-2 simulations to streams observed by the Southern Stellar Stream Spectroscopic Survey ( S 5 ). For an accurate comparison, we produce mock Dark Energy Survey (DES) observations of the FIRE streams and estimate the detectability of their tidal tails and progenitors. The number and stellar mass distributions of detectable stellar streams is consistent between observations and simulations. However, there are discrepancies in the distributions of pericenters and apocenters, with the detectable FIRE streams, on average, forming at larger pericenters (out to >110 kpc) and surviving only at larger apocenters (≳40 kpc) than those observed in the Milky Way. We find that the population of high-stellar-mass dwarf galaxy streams in the Milky Way is incomplete. Interestingly, a large fraction of the FIRE streams would only be detected as intact satellites in DES-like observations, since their tidal tails have too low surface brightness to be detectable. We thus predict a population of yet-undetected tidal tails around Milky Way satellites, as well as a population of fully undetected low-surface-brightness stellar streams, and estimate their detectability with the Rubin Observatory. Finally, we discuss the causes and implications of the discrepancies between the stream populations in FIRE and the Milky Way, and explore future avenues for tests of satellite disruption in cosmological simulations. 
    more » « less
  3. ABSTRACT While many tensions between Local Group (LG) satellite galaxies and Λ cold dark matter cosmology have been alleviated through recent cosmological simulations, the spatial distribution of satellites remains an important test of physical models and physical versus numerical disruption in simulations. Using the FIRE-2 cosmological zoom-in baryonic simulations, we examine the radial distributions of satellites with $$M_*\gt 10^5$$ M⊙ around eight isolated Milky Way (MW) mass host galaxies and four hosts in LG-like pairs. We demonstrate that these simulations resolve the survival and physical destruction of satellites with $$M_*\gtrsim 10^5$$ M⊙. The simulations broadly agree with LG observations, spanning the radial profiles around the MW and M31. This agreement does not depend strongly on satellite mass, even at distances ≲100 kpc. Host-to-host variation dominates the scatter in satellite counts within 300 kpc of the hosts, while time variation dominates scatter within 50 kpc. More massive host galaxies within our sample have fewer satellites at small distances, likely because of enhanced tidal destruction of satellites via the baryonic discs of host galaxies. Furthermore, we quantify and provide fits to the tidal depletion of subhaloes in baryonic relative to dark matter-only simulations as a function of distance. Our simulated profiles imply observational incompleteness in the LG even at $$M_*\gtrsim 10^5$$ M⊙: we predict 2–10 such satellites to be discovered around the MW and possibly 6–9 around M31. To provide cosmological context, we compare our results with the radial profiles of satellites around MW analogues in the SAGA survey, finding that our simulations are broadly consistent with most SAGA systems. 
    more » « less
  4. ABSTRACT The star formation and gas content of satellite galaxies around the Milky Way (MW) and Andromeda (M31) are depleted relative to more isolated galaxies in the Local Group (LG) at fixed stellar mass. We explore the environmental regulation of gas content and quenching of star formation in z = 0 galaxies at $$M_{*}=10^{5\!-\!10}\, \rm {M}_{\odot }$$ around 14 MW-mass hosts from the Feedback In Realistic Environments 2 (FIRE-2) simulations. Lower mass satellites ($$M_{*}\lesssim 10^7\, \rm {M}_{\odot }$$) are mostly quiescent and higher mass satellites ($$M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$$) are mostly star forming, with intermediate-mass satellites ($$M_{*}\approx 10^{7\!-\!8}\, \rm {M}_{\odot }$$) split roughly equally between quiescent and star forming. Hosts with more gas in their circumgalactic medium have a higher quiescent fraction of massive satellites ($$M_{*}=10^{8\!-\!9}\, \rm {M}_{\odot }$$). We find no significant dependence on isolated versus paired (LG-like) host environments, and the quiescent fractions of satellites around MW-mass and Large Magellanic Cloud (LMC)-mass hosts from the FIRE-2 simulations are remarkably similar. Environmental effects that lead to quenching can also occur as pre-processing in low-mass groups prior to MW infall. Lower mass satellites typically quenched before MW infall as central galaxies or rapidly during infall into a low-mass group or a MW-mass galaxy. Most intermediate- to high-mass quiescent satellites have experienced ≥1–2 pericentre passages (≈2.5–5 Gyr) within a MW-mass halo. Most galaxies with $$M_{*}\gtrsim 10^{6.5}\, \rm {M}_{\odot }$$ did not quench before falling into a host, indicating a possible upper mass limit for isolated quenching. The simulations reproduce the average trend in the LG quiescent fraction across the full range of satellite stellar masses. Though the simulations are consistent with the Satellites Around Galactic Analogs (SAGA) survey’s quiescent fraction at $$M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$$, they do not generally reproduce SAGA’s turnover at lower masses. 
    more » « less
  5. Abstract It is necessary to understand the full accretion history of the Milky Way in order to contextualize the properties of observed Milky Way satellite galaxies and the stellar halo. This paper compares the dynamical properties and star formation histories of surviving and disrupted satellites around Milky Way–like galaxies using theD.C. Justice Leaguesuite of very high-resolution cosmological zoom-in simulations of Milky Way analogs and their halo environments. We analyze the full census of galaxies accreted within the past 12 Gyr, including both surviving satellites atz= 0, and dwarf galaxies that disrupted and merged with the host prior toz= 0. Our simulations successfully reproduce the trends inM*−[Fe/H]−[α/Fe] observed in surviving Milky Way satellites and disrupted stellar streams, indicating earlier star formation for disrupted progenitors. We find the likelihood and timescales for quenching and disruption are strongly correlated with the mass and time of infall. In particular, none of the galaxies accreted more than 12 Gyr ago survived, and only 20% of all accreted galaxies withM* > 108Msurvive. Additionally, satellites with highly radial trajectories are more likely to quench and disrupt. Disruption proceeds quickly for ≥106Msatellites accreted 10–12 Gyr ago, often on timescales similar to the ∼300 Myr snapshot spacing. For high-mass satellites, the disruption timescale is faster than the quenching timescale. As a result, 92% of disrupted galaxies remain star forming up until disruption. In contrast, ultrafaint dwarfs (UFDs) tend to quench prior to accretion, and 94% of UFDs accreted up to 12 Gyr ago survive atz= 0. 
    more » « less