skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tradeoffs between elemental homeostasis and growth govern freshwater phytoplankton responses to salinization
Abstract Anthropogenic salinization resulting from road salt application can degrade aquatic environments by altering the structure and function of phytoplankton communities, ultimately reducing flows of resources through aquatic food webs. However, physiological mechanisms underlying taxon‐specific responses to salinization are often poorly linked to higher‐order ecosystem dynamics, limiting our ability to predict community responses to salinization. To this end, we tested hypotheses derived from Subsidy‐Stress and Ecological Stoichiometry theory by growing two cosmopolitan genera,Dolichospermum(prokaryotic, cyanobacteria) andScenedesmus(eukaryotic, green algae), across NaCl gradients and contrasting differences in their growth rates, degree of Na homeostasis, and cellular C : N : P ratios. We found mixed support for the subsidy‐stress hypothesis, with only stress responses observed for both species. Instead, growth declines appeared to be linked to stoichiometric tradeoffs between growth and homeostatic regulation, with stronger homeostatic Na regulation coinciding with a greater reduction inScenedesmusgrowth rates and higher variation in their stoichiometric C : N : P ratios across NaCl gradients. Nonhomeostatic Na regulation allowedDolichospermumto sustain higher growth rates, which appeared to constrain variation in their stoichiometric C : N : P ratios along with their stronger physiological regulation of intracellular P storage molecule production. Differences in phytoplankton growth responses were consistent with stoichiometric theory and field observations documenting shifts from green algae to cyanobacteria in response to freshwater salinization. Our results suggest that these shifts could take place below existing North American chronic threshold limits, resulting in decreased production at higher trophic levels by reducing phytoplankton biomass production rates and inducing nutritional stress in consumers.  more » « less
Award ID(s):
2400621 2051120 2400620
PAR ID:
10629796
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
70
Issue:
8
ISSN:
0024-3590
Format(s):
Medium: X Size: p. 2026-2038
Size(s):
p. 2026-2038
Sponsoring Org:
National Science Foundation
More Like this
  1. Greater knowledge of how host–microbiome interactions vary with anthropogenic environmental change and influence pathogenic infections is needed to better understand stress-mediated disease outcomes. We investigated how increasing salinization in freshwaters (e.g. due to road de-icing salt runoff) and associated increases in growth of nutritional algae influenced gut bacterial assembly, host physiology and responses to ranavirus exposure in larval wood frogs (Rana sylvatica). Elevating salinity and supplementing a basic larval diet with algae increased larval growth and also increased ranavirus loads. However, larvae given algae did not exhibit elevated kidney corticosterone levels, accelerated development or weight loss post-infection, whereas larvae fed a basic diet did. Thus, algal supplementation reversed a potentially maladaptive stress response to infection observed in prior studies in this system. Algae supplementation also reduced gut bacterial diversity. Notably, we observed higher relative abundances of Firmicutes in treatments with algae—a pattern consistent with increased growth and fat deposition in mammals—that may contribute to the diminished stress responses to infection via regulation of host metabolism and endocrine function. Our study informs mechanistic hypotheses about the role of microbiome mediation of host responses to infection that can be tested in future experiments in this host–pathogen system 
    more » « less
  2. Beisner, Beatrix E (Ed.)
    Abstract Eutrophication is increasingly becoming a problem for freshwater lakes. We evaluated the effects of additions nitrate (N as NO3−) and phosphate (P as PO43−) on phytoplankton in a temperate lake reservoir (Lake Murray, South Carolina). High-performance liquid chromatography and ChemTax were used to measure concentrations of microalgal groups in the lake in 2021–2023 and bioassays. The phytoplankton community during the summer months consisted of green algae (37%), diatoms (27%), cryptophytes (20%), cyanobacteria (11%) and dinoflagellates (4%). Bioassays of N (20-μM NaNO3), P (10-μM KH2PO4) and N + P additions were conducted monthly from April to October 2023. All microalgal groups, except cyanobacteria, exhibited nutrient co-limitation with N as the primary limiting nutrient. Similarly, cyanobacteria exhibited co-limitation, but with P as the primary limiting nutrient. Nutrient additions of N + P (but not N or P singularly) also resulted in significant community shifts, with a strong response by green algae. The management implications for this study are that increases in N and P loading and ratio changes in the lake may result in major phytoplankton community changes toward dominance by green algae. However, increasing P loading relative to N may promote cyanobacterial growth over other phytoplankton groups in this lake system. 
    more » « less
  3. IntroductionDeveloping sustainable hydrogen production is critical for advancing renewable energy and reducing reliance on fossil fuels. Cyanobacteria, which harness solar energy through photosynthesis, provide a promising biological platform for hydrogen generation. However, improving hydrogen yields requires strategic metabolic and genetic modifications to optimize energy flow and overcome photosynthetic limitations. MethodsFour cyanobacterial species were evaluated for their hydrogen production capacities under varying experimental conditions. Photosynthesis was partially inhibited using distinct chemical inhibitors, including 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Exogenous glycerol was introduced as a supplementary carbon source. Hydrogen production was monitored over time, and rates were normalized to chlorophyll a content. Genomic analysis of transporter proteins was conducted to identify potential genetic loci for further enhancement of hydrogen output. ResultsNitrogen-fixingDolichospermumsp. exhibited significantly higher hydrogen production compared to the other tested species. Supplementation with glycerol notably increased both the rate and duration of hydrogen evolution, far exceeding previously established benchmarks. The maximum hydrogen production rate forDolichospermumsp. reached 132.3 μmol H₂/mg Chl a/h—representing a 30-fold enhancement over the rates observed with DCMU. Genomic screening revealed key transporter proteins with putative roles in carbon uptake and hydrogen metabolism. DiscussionThese findings underscore the potential of cyanobacteria, particularlyDolichospermumsp., as robust platforms for sustainable hydrogen production. The substantial improvements in hydrogen yield highlight the importance of targeted metabolic engineering and carbon supplementation strategies. Future work focused on optimizing identified transporter proteins and refining genetic interventions could further enhance biohydrogen efficiency. By leveraging the inherent photosynthetic machinery of cyanobacteria, this platform offers a renewable hydrogen source with significant promise for global energy sustainability. 
    more » « less
  4. Abstract The Upper Clark Fork River (UCFR), Montana, a mid-order well-lit system with contemporary anthropogenic nitrogen (N) enrichment and natural geogenic sources of phosphorus (P), experiences annual algal blooms that influence ecosystem structure and function. This study was designed to assess the occurrence of riverine algal blooms (RABs) in the UCFR by characterizing the succession of periphyton and biogeochemical conditions following annual snowmelt runoff through autumnal baseflow conditions, and to provide a framework for assessing RAB progression in montane mid-order rivers more broadly. Using a 21-year database (2000–2020) collected over the growing season at three sites, historical assessment of the persistent and recurrent character of RABs in the UCFR showed that the magnitude of the summer bloom was, in part, moderated by snowmelt disturbance. Abundance and growth forms of benthic algae, along with river physicochemistry (e.g., temperature) and water chemistry (N and P concentration), were measured over the course of snowmelt recession for three years (2018–2020) at the same three sites. Results documented the onset of major blooms of the filamentous green algaeCladophoraacross all sites, commensurate with declines in dissolved inorganic N. Atomic N:P ratios of river water suggest successional transitions from P- to N-limitation associated with mid-season senescence ofCladophoraand development of a secondary bloom of N-fixing cyanobacteria, dominated byNostoc cf. pruniforme. Rates of N-fixation, addressed at one of the sites during the 2020 snowmelt recession, increased uponCladophorasenescence to a maximal value among the highest reported for lotic systems (5.80 mg N/m2/h) before decreasing again to background levels at the end of the growing season. Based on these data, a heuristic model for mid-order rivers responding to snowmelt disturbance suggests progression from phases of physical stress (snowmelt) to optimal growth conditions, to conditions of biotic stress later in the growing season. Optimal growth is observed as green algal blooms that form shortly after peak snowmelt, then transition to stages dominated by cyanobacteria and autochthonous N production later in the growing season. Accordingly, interactions among algal composition, reactive N abundance, and autochthonous N production, suggest successional progression from reliance on external nutrient sources to increased importance of autochthony, including N-fixation that sustains riverine productivity during late stages of snowmelt recession. 
    more » « less
  5. Water column mixing can influence community composition of pelagic phytoplankton in lakes and reservoirs. Previous studies suggest that low mixing favors cyanobacteria, while increased mixing favors green algae and diatoms. However, this shift in community dominance is not consistently achieved when epilimnetic mixers are activated at the whole-ecosystem scale, possibly because phytoplankton community responses are mediated by mixing effects on other ecosystem processes. We conducted two epilimnetic mixing experiments in a small drinking water reservoir using a bubble-plume diffuser system. We measured physical, chemical, and biological variables before, during, and after mixing and compared the results to an unmixed reference reservoir. We observed significant increases in the biomass of cyanobacteria (from 0.8 ± 0.2 to 2.4 ± 1.1 μg L−1, p = 0.008), cryptophytes (from 0.7 ± 0.1 to 1.9 ± 0.6 μg L−1, p = 0.003), and green algae (from 3.8 to 4.4 μg L−1, p = 0.15) after our first mixing event, likely due to increased total phosphorus from entrainment of upstream sediments. After the second mixing event, phytoplankton biomass did not change but phytoplankton community composition shifted from taxa with filamentous morphology to smaller, rounder taxa. Our results suggest that whole-ecosystem dynamics and phytoplankton morphological traits should be considered when predicting phytoplankton community responses to epilimnetic mixing. 
    more » « less