If a knot K in S^3 admits a pair of truly cosmetic surgeries, we show that the surgery slopes are either ±2 or ±1/q for some value of q that is explicitly determined by the knot Floer homology of K. Moreover, in the former case the genus of K must be 2, and in the latter case there is a bound relating q to the genus and the Heegaard Floer thickness of K. As a consequence, we show that the cosmetic crossing conjecture holds for alternating knots (or more generally, Heegaard Floer thin knots) with genus not equal to 2. We also show that the conjecture holds for any knot K for which each prime summand of K has at most 16 crossings; our techniques rule out cosmetic surgeries in this setting except for slopes ±1 and ±2 on a small number of knots, and these remaining examples can be checked by comparing hyperbolic invariants. These results make use of the surgery formula for Heegaard Floer homology, which has already proved to be a powerful tool for obstructing cosmetic surgeries; we get stronger obstructions than previously known by considering the full graded theory. We make use of a new graphical interpretation of knot Floer homology and the surgery formula in terms of immersed curves, which makes the grading information we need easier to access.
more »
« less
This content will become publicly available on August 1, 2026
The genus 1 bridge number of satellite knots
Abstract Let $$T$$ be a satellite knot, link, or spatial graph in a 3-manifold $$M$$ that is either $S^3$ or a lens space. Let $$\b_0$$ and $$\b_1$$ denote genus 0 and genus 1 bridge number, respectively. Suppose that $$T$$ has a companion knot $$K$$ (necessarily not the unknot) and wrapping number $$\omega$$ with respect to $$K$$. When $$K$$ is not a torus knot, we show that $$\b_1(T)\geq \omega \b_1(K)$$. There are previously known counter-examples if $$K$$ is a torus knot. Along the way, we generalize and give a new proof of Schubert's result that $$\b_0(T) \geq \omega \b_0(K)$$. We also prove versions of the theorem applicable to when $$T$$ is a "lensed satellite" and when there is a torus separating components of $$T$$.
more »
« less
- Award ID(s):
- 2104022
- PAR ID:
- 10629801
- Publisher / Repository:
- Journal of the London Mathematical Society
- Date Published:
- Journal Name:
- Journal of the London Mathematical Society
- Volume:
- 112
- Issue:
- 2
- ISSN:
- 0024-6107
- Subject(s) / Keyword(s):
- bridge number knot satellite knot Heegaard surface lens space
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Kronheimer and Mrowka asked whether the difference between the four-dimensional clasp number and the slice genus can be arbitrarily large. This question is answered affirmatively by studying a knot invariant derived from equivariant singular instanton theory, and which is closely related to the Chern-Simons functional. This also answers a conjecture of Livingston about slicing numbers. Also studied is the singular instanton Frøyshov invariant of a knot. If defined with integer coefficients, this gives a lower bound for the unoriented slice genus, and is computed for quasi-alternating and torus knots. In contrast, for certain other coefficient rings, the invariant is identified with a multiple of the knot signature. This result is used to address a conjecture by Poudel and Saveliev about traceless SU(2) representations of torus knots. Further, for a concordance between knots with non-zero signature, it is shown that there is a traceless representation of the concordance complement which restricts to non-trivial representations of the knot groups. Finally, some evidence towards an extension of the slice-ribbon conjecture to torus knots is provided.more » « less
-
Abstract Singmaster’s conjecture asserts that every natural number greater than one occurs at most a bounded number of times in Pascal’s triangle; that is, for any natural number $$t \geq 2$$, the number of solutions to the equation $$\binom{n}{m} = t$$ for natural numbers $$1 \leq m \lt n$$ is bounded. In this paper we establish this result in the interior region $$\exp(\log^{2/3+\varepsilon} n) \leq m \leq n - \exp(\log^{2/3+\varepsilon} n)$$ for any fixed ɛ > 0. Indeed, when t is sufficiently large depending on ɛ, we show that there are at most four solutions (or at most two in either half of Pascal’s triangle) in this region. We also establish analogous results for the equation $$(n)_m = t$$, where $$(n)_m := n(n-1) \dots (n-m+1)$$ denotes the falling factorial.more » « less
-
Let $${\bf A}$$ be an $$n\times m$$ matrix over $$\mathbf{GF}_2$$ where each column consists of $$k$$ ones, and let $$M$$ be an arbitrary fixed binary matroid. The matroid growth rate theorem implies that there is a constant $$C_M$$ such that $$m\geq C_M n^2$$ implies that the binary matroid induced by {\bf A} contains $$M$$ as a minor. We prove that if the columns of $${\bf A}={\bf A}_{n,m,k}$$ are chosen \emph{randomly}, then there are constants $$k_M, L_M$$ such that $$k\geq k_M$$ and $$m\geq L_M n$$ implies that $${\bf A}$$ contains $$M$$ as a minor w.h.p.more » « less
An official website of the United States government
