skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 20, 2026

Title: Expanded application to plant reproductive tissues of a branched DNA probe‐based in situ hybridization method
Abstract PremiseDetecting clear tissue‐ and organ‐specific patterns of gene expression is key to understanding the genetic mechanisms that control plant development. In situ hybridization (ISH) of mRNA is one of the most precise, yet most challenging approaches to gene expression assays. Methods and ResultsDetection of histone H4 expression in reproductive tissues ofMimulus lewisii, a model angiosperm, was optimized using the RNAscope ISH assay. The optimized protocol was used to detect histone H4 expression in reproductive tissues of two gymnosperm species,Taxodium distichumandJuniperus virginiana, without further need for species‐specific optimization. Additionally, the optimized protocol was used to detect expression ofCYCLOIDEAtranscription factors inM. lewisiireproductive tissues without further optimization and with results similar to those previously reported. ConclusionsThe RNAscope assay can quickly and sensitively generate high‐quality ISH results in reproductive tissues across a breadth of plant species.  more » « less
Award ID(s):
2421327
PAR ID:
10630005
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley Publishing
Date Published:
Journal Name:
Applications in Plant Sciences
ISSN:
2168-0450
Page Range / eLocation ID:
10.1002/aps3.70020
Subject(s) / Keyword(s):
branched DNA probes CYCLOIDEA histone H4 inflorescence in situ hybridization reproductive cone RNAscope Z-probe
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundLife cycle evolution includes ecological transitions and shifts in the timing of somatic and reproductive development (heterochrony). However, heterochronic changes can be tissue‐specific, ultimately leading to the differential diversification of traits. Salamanders exhibit alternative life cycle polymorphisms involving either an aquatic to terrestrial metamorphosis (biphasic) or retention of aquatic larval traits into adulthood (paedomorphic). In this study, we used gene expression and histology to evaluate how life cycle evolution impacts temporal reproductive patterns in males of a polymorphic salamander. ResultsWe found that heterochrony shifts the distribution of androgen signaling in the integument, which is correlated with significant differences in seasonal reproductive gland development and pheromone gene expression. In the testes, androgen receptor (ar) expression does not significantly vary between morphs or across seasons. We found significant differences in the onset of spermatogenesis, but by peak breeding season the testes were the same with respect to both histology and gene expression. ConclusionThis study provides an example of how seasonal heterochronic shifts in tissue‐specificargene expression can disparately impact seasonal development and expression patterns across tissues, providing a potential mechanism for differential diversification of reproductive traits. 
    more » « less
  2. Abstract BackgroundX chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNAXiston the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions. One of these genes is the highly conserved geneKdm6a, which encodes a histone demethylase that removes methyl groups at H3K27 to facilitate gene expression.KDM6Amutations have been implicated in congenital disorders such as Kabuki Syndrome, as well as in sex differences in development and cancer. MethodsKdm6awas knocked out (KO) using CRISPR/Cas9 gene editing in hybrid female mouse embryonic stem (ES) cells derived either from a 129 × Mus castaneus(cast) cross or a BL6 xcastcross. In one of the lines a transcriptional stop signal inserted inTsixresults in completely skewed X silencing upon differentiation. The effects of both homozygous and heterozygousKdm6aKO onXistexpression during the onset of XCI were measured by RT-PCR and RNA-FISH. Changes in gene expression and in H3K27me3 enrichment were investigated using allele-specific RNA-seq and Cut&Run, respectively. KDM6A binding to theXistgene was characterized by Cut&Run. ResultsWe observed impaired upregulation ofXistand reduced coating of the Xi during early stages of differentiation inKdm6aKO cells, both homozygous and heterozygous, suggesting a threshold effect of KDM6A. This was associated with aberrant overexpression of genes from the Xi after differentiation, indicating loss of X inactivation potency. Consistent with KDM6A having a direct role inXistregulation, we found that the histone demethylase binds to theXistpromoter and KO cells show an increase in H3K27me3 atXist, consistent with reduced expression. ConclusionsThese results reveal a novel female-specific role for the X-linked histone demethylase, KDM6A in the initiation of XCI through histone demethylase-dependent activation ofXistduring early differentiation. Plain language summaryX chromosome inactivation is a female-specific mechanism that evolved to balance sex-linked gene dosage between females (XX) and males (XY) by silencing one X chromosome in females. X inactivation begins with the upregulation of the long noncoding RNAXiston the future inactive X chromosome. While most genes become silenced on the inactive X chromosome some genes escape inactivation and thus have higher expression in females compared to males, suggesting that escape genes may have female-specific functions. One such gene encodes the histone demethylase KDM6A which function is to turn on gene expression by removing repressive histone modifications. In this study, we investigated the role of KDM6A in the regulation ofXistexpression during the onset of X inactivation. We found that KDM6A binds to theXistgene to remove repressive histone marks and facilitate its expression in early development. Indeed, depletion of KDM6A prevents upregulation ofXistdue to abnormal persistence of repressive histone modifications. In turn, this results in aberrant overexpression of genes from the inactive X chromosome. Our findings point to a novel mechanism ofXistregulation during the initiation of X inactivation, which may lead to new avenues of treatment to alleviate congenital disorders such as Kabuki syndrome and sex-biased immune disorders where X-linked gene dosage is perturbed. 
    more » « less
  3. In briefModes of reproduction across limbed vertebrates are diverse, but the molecular mechanisms required for the development and maintenance of reproductive tract tissue architecture are poorly understood. This paper describes gene expression changes across the regions of the reproductive tract of the adult female brown anole,Anolis sagrei. AbstractThe morphological diversity and functional role of the organs of the female reproductive system across tetrapods (limbed vertebrates) are relatively poorly understood. Although some features are morphologically similar, species-specific modification makes comparisons between species and inference about evolutionary origins challenging. In combination with the study of morphological changes, studying differences in gene expression in the adult reproductive system in diverse species can clarify the function of each organ. Here, we use the brown anole,Anolis sagrei, to study gene expression differences within the reproductive tract of the adult female. We generated gene expression profiles of four biological replicates of the three regions of the female reproductive tract, the infundibulum, glandular uterus, and nonglandular uterus, by RNA-sequencing. We aligned reads to the recently publishedA. sagreigenome and identified significantly differentially expressed genes between the regions using DESeq2. Each organ expressed approximately 14,600 genes, and comparison of gene expression profiles between organs revealed between 367 and 883 differentially expressed genes. We identify shared and region-specific transcriptional signatures for the three regions and compare gene expression in the brown anole reproductive tract to known gene expression patterns in other tetrapods. We find that genes in theHoxcluster have an anterior–posterior, collinear expression pattern as has been described in mammals. We also define a secretome for the glandular uterus. These data provide fundamental information for functional studies of the reproductive tract organs in the brown anole and an important phylogenetic anchor for comparative studies of the evolution of the female reproductive tract. 
    more » « less
  4. PremiseTagSeq is a cost‐effective approach for gene expression studies requiring a large number of samples. To date, TagSeq studies in plants have been limited to those with a high‐quality reference genome. We tested the suitability of reference transcriptomes for TagSeq in non‐model plants, as part of a study of natural gene expression variation at the Santa Rita Experimental Range National Ecological Observatory Network (NEON) core site. MethodsTissue for TagSeq was sampled from multiple individuals of four species (Bouteloua aristidoidesandEragrostis lehmanniana[Poaceae],Tidestromia lanuginosa[Amaranthaceae], andParkinsonia florida[Fabaceae]) at two locations on three dates (56 samples total). One sample per species was used to create a reference transcriptome via standard RNA‐seq. TagSeq performance was assessed by recovery of reference loci, specificity of tag alignments, and variation among samples. ResultsA high fraction of tags aligned to each reference and mapped uniquely. Expression patterns were quantifiable for tens of thousands of loci, which revealed consistent spatial differentiation in expression for all species. DiscussionTagSeq using de novo reference transcriptomes was an effective approach to quantifying gene expression in this study. Tags were highly locus specific and generated biologically informative profiles for four non‐model plant species. 
    more » « less
  5. SUMMARY Switch defective/sucrose non‐fermentable (SWI/SNF) chromatin remodeling complexes are evolutionarily conserved, multi‐subunit machinery that play vital roles in the regulation of gene expression by controlling nucleosome positioning and occupancy. However, little is known about the subunit composition of SPLAYED (SYD)‐containing SWI/SNF complexes in plants. Here, we show that theArabidopsis thalianaLeaf and Flower Related (LFR) is a subunit of SYD‐containing SWI/SNF complexes. LFR interacts directly with multiple SWI/SNF subunits, including the catalytic ATPase subunit SYD,in vitroandin vivo. Phenotypic analyses oflfr‐2mutant flowers revealed that LFR is important for proper filament and pistil development, resembling the function of SYD. Transcriptome profiling revealed that LFR and SYD shared a subset of co‐regulated genes. We further demonstrate that the LFR and SYD interdependently activate the transcription ofAGAMOUS(AG), a C‐class floral organ identity gene, by regulating the occupation of nucleosome, chromatin loop, histone modification, and Pol II enrichment on theAGlocus. Furthermore, the chromosome conformation capture (3C) assay revealed that the gene loop atAGlocus is negatively correlated with theAGexpression level, and LFR‐SYD was functional to demolish theAGchromatin loop to promote its transcription. Collectively, these results provide insight into the molecular mechanism of the Arabidopsis SYD‐SWI/SNF complex in the control of higher chromatin conformation of the floral identity gene essential to plant reproductive organ development. 
    more » « less