Scientific instruments have long been a vital part of science, paving pathways to remarkable scientific advancements. Such advancements have changed the world both socially and culturally, especially in the past few decades. Students can be introduced to this idea through the concepts of nature of science (NOS): scientific observations are often filtered through apparatus, inferences can be made through observations, and science is a socially and culturally embedded practice. The curriculum often fails to emphasize the role of instruments in scientific practices, even in teaching laboratories. This study uses semistructured interviews to investigate the cognitive (thoughts) and affective (feelings) domains of first-year university students as they relate to scientific instrumentation, including students’ ideas of instruments. First, the study probed how general chemistry students conceptualize scientific instruments in relation to the three NOS notions. Second, students’ practices related to experimental data evaluation were investigated as data collection is a large part of psychomotor learning in laboratory. Third, students’ affective states toward learning about instruments were queried. The interview results suggested that a majority of participants acknowledge some ideas of NOS, while a few students displayed an advanced understanding when discussing scientific instruments and also tended to have higher interest and motivation toward learning about instruments.
more »
« less
This content will become publicly available on August 20, 2026
Knowing from Glowing: Evidence from Fluorescence Laboratories on the Impact of Visualization on Meaningful Learning
Fluorescence experiments hold great potential to develop and deepen student understanding of fundamental chemical concepts because the phenomenon is engaging and also illustrates many different chemical concepts and applications, including in quantum mechanics, spectroscopy, kinetics, equilibrium, and stoichiometry, through easily observable effects. Thus, many fluorescence experiments have been published for higher education. However, less attention has been given to analyzing students’ actual learning and experiences in systematic ways. In this paper, we share findings from interviews with students who completed three different fluorescence laboratory experiments in general chemistry courses at an urban public commuter university, analyzed through the lens of meaningful learning. Interview data for the affective learning dimension of meaningful learning was done with Galloway et al.’s 18-word affective matrix with addition of a new category that emerged strongly in the interviews: “enjoyed”. Interview transcripts were also analyzed for elements corresponding to the psychomotor and cognitive domains of meaningful learning. Results documented how important the affective and psychomotor domains were to students’ experiences in this setting. In addition to the three domains of meaningful learning, we also documented the particular role of the process of “visualization” to the students and examined how students connected their observations to molecular-level processes and corresponding models using Johnstone’s triangle as a framework. Our findings indicate that students primarily engaged with and appreciated the psychomotor domain and the visualization at the macroscopic level of the fluorescence experiments, which contributed to their understanding of the submicroscopic level but not at the symbolic level. By engaging students in the affective domain, the visually compelling experiments support deeper connections between macroscopic observations and submicroscopic models. We hope that this research informs future directions in designing curriculum and supports the effective integration of fluorescence experiments into general chemistry instruction.
more »
« less
- Award ID(s):
- 2111446
- PAR ID:
- 10630015
- Editor(s):
- Talanquer, Vicente; Holme, Thomas A
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Journal of Chemical Education
- Edition / Version:
- 1
- Volume:
- 102
- ISSN:
- 0021-9584
- Subject(s) / Keyword(s):
- First Year Undergraduate/General Meaningful Learning Fluorescence Chemical Education Research Hands-On Learning Laboratory learning
- Format(s):
- Medium: X Other: docx
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Holme, Thomas A (Ed.)This paper presents a phenomenographic investigation on students’ experiences about research and poster presentations in a workshop-based undergraduate research experience with a focus on how the experience connects to the Science and Engineering Practices (SEPs) of the NRC A Framework for K-12 Science Education and the principles of CUREs. This provides insight into how these structured research experiences reflect particular SEPs and also elements of scientific practice that are not captured in the SEPs as they have been formulated previously. This work showcases the importance of future applications, failure, and creativity as additional science practices necessary for students to engage in authentic science. The SEPs and the additional elements of scientific practice are related to how students experience meaningful learning in the cognitive, psychomotor, and affective domains. Students highlighted the components of CUREs: importance of contributing relevant discoveries as a motivation for their research, the value of repetition and iteration in ensuring reliable and valid results, and the role of collaboration in seeing new perspectives and solving problems. As a result of presenting their results through a poster, students reported deeper understanding of their research topic, increased ability to articulate scientific concepts, and a better understanding of how to create a visually appealing poster. Students changed the vocabulary they used in their presentations to fit the knowledge level of their audience and highlighted their data in figures and explained other parts of their work in text. Moreover, they saw the poster as an outlet for their creativity.more » « less
-
Holme, Thomas A (Ed.)A key part of the practice of chemistry is the analysis of chemical composition, including through gravimetric analysis and spectrophotometry. However, the complexity of doing multiple calculations to obtain analytical evidence, such as that required to determine an empirical formula, presents a challenge if such analytical methods are to be understood by students and if they are to support meaningful learning about other chemical concepts and methods. In this study we investigate student use of spectrophotometry and gravimetric analysis to determine the number of water molecules in hydrates of copper (II) salts, a method previously described by Barlag and Nyasulu. Using phenomenography to analyze students reports through the lens of meaningful learning we identified four distinct perceptions and, within them, information of how students make sense of the complex analytical steps involved in the experiment. We identify how meaningful learning is present where students recognized that spectrophotometry was based on light-matter interactions (cognitive,) was faster and more accurate (psychomotor), and allowed students to express confidence in the process and their results (affective). However, it is also the case that meaningful learning was compromised where students had trouble conceptualizing spectrophotometry, saw it as a set of disconnected steps, and where they saw absorbance as a computer-generated value and not a property of the solution. This led to the perception that gravimetric analysis provided a more direct and understandable technique. We discuss the implications of these findings for chemistry education research (CER) and for curriculum development in the undergraduate teaching lab.more » « less
-
null (Ed.)Conceptually understanding chemistry requires the ability to transition among representational levels to use an understanding of submicroscopic entities and properties to explain macroscopic phenomena. Past literature describes student struggles with these transitions but provides limited information about upper-level post-secondary chemistry students’ abilities to transition among levels. This group is of particular interest as they are engaging in potentially their final training before entering a career as professional chemists, thus if students are likely to develop this skill during their formal education it should be manifest among this group. This study characterized analytical chemistry students’ responses to open-ended assessments on acid–base titrations and thin-layer chromatography for the use of sub-microscopic entities or properties to explain these macroscopic phenomena. Further, to understand whether explanatory statements were an expectation inherent in the instructional context of the setting, the analytical chemistry instructor's lectures on acid–base titrations and thin-layer chromatography were analyzed with the same framework. The analysis found that students seldom invoked explanatory statements within their responses and that congruence between lectures and responses to assessment was primarily limited to the use of macroscopic, descriptive terms. Despite the fact that the lecture in class regularly invoked explanatory statements in one context, this did not translate to student use of explanatory statements. To further test the hypothesis that analytical chemistry students struggle with explanatory statements, a follow-on study was also conducted among a second cohort of students reviewing their responses when specifically prompted to use sub-microscopic entities to explain a macroscopic phenomenon. The results suggest that fewer than half of the students showed proficiency on generating explanatory statements when explicitly prompted to do so. Instructional implications to promote explanatory statements are proposed in the discussion.more » « less
-
Incorporating real-life context through connections to research early in the curriculum can create meaningful learning opportunities that encourage students to engage deeply with classroom content to construct chemistry knowledge. Course-based undergraduate research experiences have been successful at integrating real-life context, but are often only incorporated into upper-level courses. To provide an additional pathway to foster interaction with research, four activities from an introductory chemistry discussion class were created to incorporate authentic research connections. Care was taken to incorporate metacognitive questions designed to help students make connections between their preexisting knowledge and course content. Marzano’s taxonomy was used to analyze the cognitive complexity of tasks, which increased in the revised activities, allowing for more opportunities for knowledge construction. Audio and written work of student groups as they worked through activities was collected. Qualitative analysis of student engagement revealed that control over the content of activities to incorporate opportunities for knowledge construction is not enough to facilitate students consciously engaging in meaningful learning. If instructors wish to promote students integrating chemistry knowledge into their existing framework, course instructors, including graduate teaching assistants, need to be trained on how to properly facilitate classroom experiences to increase the likelihood of success.more » « less
An official website of the United States government
