skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hands-on Activities to Engage Students in Muscle Cell Structure and Function
Student-centered learning of biology concepts through hands-on tactile approaches is one of the important themes in inclusive and equitable STEM teaching. In our article, we describe the development of clay Velcro origami models for students to explore the molecular and cellular process of muscle fiber formation. We repurposed dollar store items and recyclable items used to construct a variety of textures in the clay Velcro model of early and late stages of muscle fiber formation. These hands-on activities are linked to the Next Generation Science Standards (NGSS) on using a model to explore the cell and structure changes to form a multinucleated muscle fiber or the formation of a syncytium. Finally, we also illustrate how students can utilize the clay Velcro model to make predictions if key molecules in cell fusion do not work during the process of syncytial formation during muscle fiber development.  more » « less
Award ID(s):
1852032
PAR ID:
10630052
Author(s) / Creator(s):
;
Publisher / Repository:
University of California Press
Date Published:
Journal Name:
The American Biology Teacher
Volume:
86
Issue:
7
ISSN:
0002-7685
Page Range / eLocation ID:
441 to 446
Subject(s) / Keyword(s):
syncytium cell fusion Velcro clay models access integrative biology inclusion
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cardiac fibrosis is a pathological process characterized by excessive tissue deposition, matrix remodeling, and tissue stiffening, which eventually leads to organ failure. On a cellular level, the development of fibrosis is associated with the activation of cardiac fibroblasts into myofibroblasts, a highly contractile and secretory phenotype. Myofibroblasts are commonly identified in vitro by the de novo assembly of alpha-smooth muscle actin stress fibers; however, there are few methods to automate stress fiber identification, which can lead to subjectivity and tedium in the process. To address this limitation, we present a computer vision model to classify and segment cells containing alpha-smooth muscle actin stress fibers into 2 classes (α-SMA SF+and α-SMA SF-), with a high degree of accuracy (cell accuracy: 77%, F1 score 0.79). The model combines standard image processing methods with deep learning techniques to achieve semantic segmentation of the different cell phenotypes. We apply this model to cardiac fibroblasts cultured on hyaluronic acid-based hydrogels of various moduli to induce alpha-smooth muscle actin stress fiber formation. The model successfully predicts the same trends in stress fiber identification as obtained with a manual analysis. Taken together, this work demonstrates a process to automate stress fiber identification in in vitro fibrotic models, thereby increasing reproducibility in fibroblast phenotypic characterization. 
    more » « less
  2. Finding optimal bipartite matchings—e.g., matching medical students to hospitals for residency, items to buyers in an auction, or papers to reviewers for peer review—is a fundamental combinatorial optimization problem. We found a distributed algorithm for computing matchings by studying the development of the neuromuscular circuit. The neuromuscular circuit can be viewed as a bipartite graph formed between motor neurons and muscle fibers. In newborn animals, neurons and fibers are densely connected, but after development, each fiber is typically matched (i.e., connected) to exactly one neuron. We cast this synaptic pruning process as a distributed matching (or assignment) algorithm, where motor neurons “compete” with each other to “win” muscle fibers. We show that this algorithm is simple to implement, theoretically sound, and effective in practice when evaluated on real-world bipartite matching problems. Thus, insights from the development of neural circuits can inform the design of algorithms for fundamental computational problems. 
    more » « less
  3. Orientational order, encoded in anisotropic fields, plays an important role during the development of an organism. A striking example of this is the freshwater polypHydra, where topological defects in the muscle fiber orientation have been shown to localize to key features of the body plan. This body plan is organized by morphogen concentration gradients, raising the question how muscle fiber orientation, morphogen gradients and body shape interact. Here, we introduce a minimal model that couples nematic orientational order to the gradient of a morphogen field. We show that on a planar surface, alignment to a radial concentration gradient can induce unbinding of topological defects, as observed during budding and tentacle formation inHydra, and stabilize aster/vortex-like defects, as observed at aHydra’s mouth. On curved surfaces mimicking the morphologies ofHydrain various stages of development—from spheroid to adult—our model reproduces the experimentally observed reorganization of orientational order. Our results suggest how gradient alignment and curvature effects may work together to control orientational order during development and lay the foundations for future modeling efforts that will include the tissue mechanics that drive shape deformations. 
    more » « less
  4. In light of the coronavirus disease 2019 (COVID-19), recent clinical research has demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects breathing and internal organs, especially the kidneys and liver function. It is evident that the kidneys are induced by the virus through the course of the medication treatments, such as the side effects that lead to kidney and liver damage. In order to scaffold kidney pathophysiology with normal kidney development and function in a virtual class or lab setting during the COVID-19 pandemic, we have developed a hands-on and cost-effective clay modeling teaching tool at the undergraduate level for learning about kidney anatomy and development. Given remote teaching, this innovative tool can be used to link the structure to molecular and cellular function through an easy hands-on model for both learning and teaching demonstration for all students. 
    more » « less
  5. Cotton fiber provides the predominant plant textile in the world, and it is also a model for plant cell wall biosynthesis. The development of the single-celled cotton fiber takes place across several overlapping but discrete stages, including fiber initiation, elongation, the transition from elongation to secondary cell wall formation, cell wall thickening, and maturation and cell death. During each stage, the developing fiber undergoes a complex restructuring of genome-wide gene expression change and physiological/biosynthetic processes, which ultimately generate a strikingly elongated and nearly pure cellulose product that forms the basis of the global cotton industry. Here, we provide an overview of this developmental process focusing both on its temporal as well as evolutionary dimensions. We suggest potential avenues for further improvement of cotton as a crop plant. 
    more » « less