Abstract Many physical phenomena are modeled as stochastic searchers looking for targets. In these models, the probability that a searcher finds a particular target, its so-called hitting probability, is often of considerable interest. In this work we determine hitting probabilities for stochastic search processes conditioned on being faster than a random short time. Such times have been used to model stochastic resetting or stochastic inactivation. These results apply to any search process, diffusive or otherwise, whose unconditional short-time behavior can be adequately approximated, which we characterize for broad classes of stochastic search. We illustrate these results in several examples and show that the conditional hitting probabilities depend predominantly on the relative geodesic lengths between the initial position of the searcher and the targets. Finally, we apply these results to a canonical evidence accumulation model for decision making.
more »
« less
This content will become publicly available on April 1, 2026
Cover times with stochastic resetting
Cover times quantify the speed of exhaustive search. In this work, we approximate the moments of cover times of a wide range of stochastic search processes in d-dimensional continuous space and on an arbitrary discrete network under frequent stochastic resetting. These approximations apply to a large class of resetting time distributions and search processes including diffusion, run-and-tumble particles, and Markov jump processes. We illustrate these results in several examples; in the case of diffusive search, we show that the errors of our approximations vanish exponentially fast. Finally, we derive a criterion for when endowing a discrete state search process with minimal stochastic resetting reduces the mean cover time.
more »
« less
- PAR ID:
- 10630071
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Chaos: An Interdisciplinary Journal of Nonlinear Science
- Volume:
- 35
- Issue:
- 4
- ISSN:
- 1054-1500
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Contagious processes on networks, such as spread of disease through physical proximity or information diffusion over social media, are continuous-time processes that depend upon the pattern of interactions between the individuals in the network. Continuous-time stochastic epidemic models are a natural fit for modeling the dynamics of such processes. However, prior work on such continuous-time models doesn’t consider the dynamics of the underlying interaction network which involves addition and removal of edges over time. Instead, researchers have typically simulated these processes using discrete-time approximations, in which one has to trade off between high simulation accuracy and short computation time. In this paper, we incorporate continuous-time network dynamics (addition and removal of edges) into continuous-time epidemic simulations. We propose a rejection-sampling based approach coupled with the well-known Gillespie algorithm that enables exact simulation of the continuous-time epidemic process. Our proposed approach gives exact results, and the computation time required for simulation is reduced as compared to discrete-time approximations of comparable accuracy.more » « less
-
Developing a thermodynamic theory of computation is a challenging task at the interface of nonequilibrium thermodynamics and computer science. In particular, this task requires dealing with difficulties such as stochastic halting times, unidirectional (possibly deterministic) transitions, and restricted initial conditions, features common in real-world computers. Here, we present a framework which tackles all such difficulties by extending the martingale theory of nonequilibrium thermodynamics to generic nonstationary Markovian processes, including those with broken detailed balance and/or absolute irreversibility. We derive several universal fluctuation relations and second-law-like inequalities that provide both lower and upper bounds on the intrinsic dissipation (mismatch cost) associated with any periodic process—in particular, the periodic processes underlying all current digital computation. Crucially, these bounds apply even if the process has stochastic stopping times, as it does in many computational machines. We illustrate our results with exhaustive numerical simulations of deterministic finite automata processing bit strings, one of the fundamental models of computation from theoretical computer science. We also provide universal equalities and inequalities for the acceptance probability of words of a given length by a deterministic finite automaton in terms of thermodynamic quantities, and outline connections between computer science and stochastic resetting. Our results, while motivated from the computational context, are applicable far more broadly.more » « less
-
Adaptivity in Stochastic Submodular Cover Solutions to stochastic optimization problems are typically sequential decision processes that make decisions one by one, waiting for (and using) the feedback from each decision. Whereas such “adaptive” solutions achieve the best objective, they can be very time-consuming because of the need to wait for feedback after each decision. A natural question is are there solutions that only adapt (i.e., wait for feedback) a few times whereas still being competitive with the fully adaptive optimal solution? In “The Power of Adaptivity for Stochastic Submodular Cover,” Ghuge, Gupta, and Nagarajan resolve this question in the context of stochastic submodular cover, which is a fundamental stochastic covering problem. They provide algorithms that achieve a smooth trade-off between the number of adaptive “rounds” and the solution quality. The authors also demonstrate via experiments on real-world and synthetic data sets that, even for problems with more than 1,000 decisions, about six rounds of adaptivity suffice to obtain solutions nearly as good as fully adaptive solutions.more » « less
-
We develop a general framework for stationary marked point processes in discrete time. We start with a careful analysis of the sample paths. Our initial representation is a sequence {(tj,kj) :j∈Z} of times tj∈Z and marks kj∈K, with batch arrivals (i.e.,tj=tj+1) allowed. We also define alternative interarrival time and sequence representations and show that the three different representations are topologically equivalent. Then, we develop discrete analogs of the familiar stationary stochastic constructs in continuous time: time-stationary and point-stationary random marked point processes, Palm distributions, inversion formulas and Campbell’s theorem with an application to the derivation of a periodic-stationary Little’s law. Along the way,we provide examples to illustrate interesting features of the discrete-time theory.more » « less
An official website of the United States government
