skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Simple and High-Precision Hamiltonian Simulation by Compensating Trotter Error with Linear Combination of Unitary Operations
Trotter and linear combination of unitary (LCU) operations are two popular Hamiltonian simulation methods. The Trotter method is easy to implement and enjoys good system-size dependence endowed by commutator scaling, while the LCU method admits high-accuracy simulation with a smaller gate cost. We propose Hamiltonian simulation algorithms using LCU to compensate Trotter error, which enjoy both of their advantages. By adding few gates after the K th -order Trotter formula, we realize a better time scaling than 2 K th -order Trotter. Our first algorithm exponentially improves the accuracy scaling of the K th -order Trotter formula. For a generic Hamiltonian, the estimated gate counts of the first algorithm can be 2 orders of magnitude smaller than the best analytical bound of fourth-order Trotter formula. In the second algorithm, we consider the detailed structure of Hamiltonians and construct LCU for Trotter errors with commutator scaling. Consequently, for lattice Hamiltonians, the algorithm enjoys almost linear system-size dependence and quadratically improves the accuracy of the K th -order Trotter. For the lattice system, the second algorithm can achieve 3 to 4 orders of magnitude higher accuracy with the same gate costs as the optimal Trotter algorithm. These algorithms provide an easy-to-implement approach to achieve a low-cost and high-precision Hamiltonian simulation.  more » « less
Award ID(s):
2137642
PAR ID:
10630097
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
APS
Date Published:
Journal Name:
PRX Quantum
Volume:
6
Issue:
1
ISSN:
2691-3399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The quantum simulation of quantum chemistry is a promising application of quantum computers. However, forNmolecular orbitals, the$${\mathcal{O}}({N}^{4})$$ O ( N 4 ) gate complexity of performing Hamiltonian and unitary Coupled Cluster Trotter steps makes simulation based on such primitives challenging. We substantially reduce the gate complexity of such primitives through a two-step low-rank factorization of the Hamiltonian and cluster operator, accompanied by truncation of small terms. Using truncations that incur errors below chemical accuracy allow one to perform Trotter steps of the arbitrary basis electronic structure Hamiltonian with$${\mathcal{O}}({N}^{3})$$ O ( N 3 ) gate complexity in small simulations, which reduces to$${\mathcal{O}}({N}^{2})$$ O ( N 2 ) gate complexity in the asymptotic regime; and unitary Coupled Cluster Trotter steps with$${\mathcal{O}}({N}^{3})$$ O ( N 3 ) gate complexity as a function of increasing basis size for a given molecule. In the case of the Hamiltonian Trotter step, these circuits have$${\mathcal{O}}({N}^{2})$$ O ( N 2 ) depth on a linearly connected array, an improvement over the$${\mathcal{O}}({N}^{3})$$ O ( N 3 ) scaling assuming no truncation. As a practical example, we show that a chemically accurate Hamiltonian Trotter step for a 50 qubit molecular simulation can be carried out in the molecular orbital basis with as few as 4000 layers of parallel nearest-neighbor two-qubit gates, consisting of fewer than 105non-Clifford rotations. We also apply our algorithm to iron–sulfur clusters relevant for elucidating the mode of action of metalloenzymes. 
    more » « less
  2. Abstract Circuit quantum electrodynamics enables the combined use of qubits and oscillator modes. Despite a variety of available gate sets, many hybrid qubit-boson (i.e. qubit-oscillator) operations are realizable only through optimal control theory, which is oftentimes intractable and uninterpretable. We introduce an analytic approach with rigorously proven error bounds for realizing specific classes of operations via two matrix product formulas commonly used in Hamiltonian simulation, the Lie–Trotter–Suzuki and Baker–Campbell–Hausdorff product formulas. We show how this technique can be used to realize a number of operations of interest, including polynomials of annihilation and creation operators, namely ( a ) p ( a ) q for integer p , q . We show examples of this paradigm including obtaining universal control within a subspace of the entire Fock space of an oscillator, state preparation of a fixed photon number in the cavity, simulation of the Jaynes–Cummings Hamiltonian, and simulation of the Hong-Ou-Mandel effect. This work demonstrates how techniques from Hamiltonian simulation can be applied to better control hybrid qubit-boson devices. 
    more » « less
  3. Abstract We study the symmetries of the static effective Hamiltonian of a driven superconducting nonlinear oscillator, the so-called squeeze-driven Kerr Hamiltonian, and discover a remarkable quasi-spin symmetrysu(2) at integer values of the ratio η = Δ / K of the detuning parameter Δ to the Kerr coefficientK. We investigate the stability of this newly discovered symmetry to high-order perturbations arising from the static effective expansion of the driven Hamiltonian. Our finding may find applications in the generation and stabilization of states useful for quantum computing. Finally, we discuss other Hamiltonians with similar properties and within reach of current technologies. 
    more » « less
  4. We combine synchrotron-based infrared absorption and Raman scattering spectroscopies with diamond anvil cell techniques and first-principles calculations to explore the properties of hafnia under compression. We find that pressure drives HfO 2 :7%Y from the mixed monoclinic ( P 2 1 / c ) + antipolar orthorhombic ( Pbca ) phase to pure antipolar orthorhombic ( Pbca ) phase at approximately 6.3 GPa. This transformation is irreversible, meaning that upon release, the material is kinetically trapped in the Pbca metastable state at 300 K. Compression also drives polar orthorhombic ( P c a 2 1 ) hafnia into the tetragonal ( P 4 2 / n m c ) phase, although the latter is not metastable upon release. These results are unified by an analysis of the energy landscape. The fact that pressure allows us to stabilize targeted metastable structures with less Y stabilizer is important to preserving the flat phonon band physics of pure HfO 2
    more » « less
  5. In this paper, we introduce an algorithm for extracting topological data from translation invariant generalized Pauli stabilizer codes in two-dimensional systems, focusing on the analysis of anyon excitations and string operators. The algorithm applies to Z d qudits, including instances where d is a nonprime number. This capability allows the identification of topological orders that differ from the Z d toric codes. It extends our understanding beyond the established theorem that Pauli stabilizer codes for Z p qudits (with p being a prime) are equivalent to finite copies of Z p toric codes and trivial stabilizers. The algorithm is designed to determine all anyons and their string operators, enabling the computation of their fusion rules, topological spins, and braiding statistics. The method converts the identification of topological orders into computational tasks, including Gaussian elimination, the Hermite normal form, and the Smith normal form of truncated Laurent polynomials. Furthermore, the algorithm provides a systematic approach for studying quantum error-correcting codes. We apply it to various codes, such as self-dual CSS quantum codes modified from the two-dimensional honeycomb color code and non-CSS quantum codes that contain the double semion topological order or the six-semion topological order. Published by the American Physical Society2024 
    more » « less