Small unmanned aircraft systems (sUAS) are rapidly transforming atmospheric research. With the advancement of the development and application of these systems, improving knowledge of best practices for accurate measurement is critical for achieving scientific goals. We present results from an intercomparison of atmospheric measurement data from the Lower Atmospheric Process Studies at Elevation—a Remotely piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. We evaluate a total of 38 individual sUAS with 23 unique sensor and platform configurations using a meteorological tower for reference measurements. We assess precision, bias, and time response of sUAS measurements of temperature, humidity, pressure, wind speed, and wind direction. Most sUAS measurements show broad agreement with the reference, particularly temperature and wind speed, with mean value differences of 1.6 ± 2.6 ∘ C and 0.22 ± 0.59 m/s for all sUAS, respectively. sUAS platform and sensor configurations were found to contribute significantly to measurement accuracy. Sensor configurations, which included proper aspiration and radiation shielding of sensors, were found to provide the most accurate thermodynamic measurements (temperature and relative humidity), whereas sonic anemometers on multirotor platforms provided the most accurate wind measurements (horizontal speed and direction). We contribute both a characterization and assessment of sUAS for measuring atmospheric parameters, and identify important challenges and opportunities for improving scientific measurements with sUAS.
more »
« less
This content will become publicly available on July 1, 2026
Development and Validation of the Skyfora StreamSonde—A Lightweight High Frequency Instrument to Measure Atmospheric Soundings
Abstract This study documents the capabilities of the StreamSonde, a lightweight (24 g) instrument manufactured by Skyfora that measures atmospheric temperature, pressure, humidity, and wind velocity. Unique features of the StreamSonde are its wind speed accuracy enabled by a dual-band Global Navigation Satellite System (GNSS) receiver, the ability to vary the terminal fall velocity, a theoretical maximum communication distance between the instrument and the deployment aircraft of 250 km, and the ability to simultaneously operate up to eight instruments (50 in the future). Skyfora’s GNSS receiver receives signals on two bands from U.S. global positioning system (GPS) (L1/L5), European Galileo (E1/E5a), and Chinese BeiDou (B1I/B2a) satellites to calculate the wind speed. The combination of dual GNSS and lower terminal fall velocity results in more accurate wind retrievals than from single-band GPS potentially allowing us calculate turbulence quantities, especially near the surface. StreamSondes were launched as dropsondes from the NOAA P-3 aircraft in both clear-air low-wind testing environments and in Hurricane Nigel (2023). The pressure, temperature, humidity (in clear air), and derived wind velocity collected by the StreamSonde compare favorably to the widely used RD41 dropsonde that was developed at the National Center for Atmospheric Research (NCAR) and is manufactured by Vaisala. At coreleased drops in Hurricane Nigel, mean absolute differences between RD41 dropsondes and StreamSondes are generally below 1°C for air temperature, 1.5 m s−1for wind speed, and 6° for wind direction. The benefits of using the StreamSonde instrument along with planned improvements to the platform are discussed. Significance StatementThis study presents proof of concept for operational deployment of a new, lightweight atmospheric profiler called the StreamSonde in a tropical cyclone. It uses advanced positioning technology to accurately measure three-dimensional wind velocity, has an adjustable terminal velocity, and can be deployed in “swarms” of sensors that have up to eight (50 in the future) instruments simultaneously active. The versatility of this emerging technology makes it useable for many meteorological applications.
more »
« less
- PAR ID:
- 10630146
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Atmospheric and Oceanic Technology
- Volume:
- 42
- Issue:
- 7
- ISSN:
- 0739-0572
- Page Range / eLocation ID:
- 857 to 872
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
15-minute summary data at NPP G-IBPE met station. Average/maximum/minimum air temperature; average relative humidity and wind direction; average/maximum wind speed; atmospheric pressure; PAR; solar radiation. These are measured and calculated based on 1-second scan rate of all sensors located at an automated meteorological station installed at Jornada LTER NPP G-IBPE site. Wind speed is measured at 75 cm, 150 cm, and 300 cm, wind direction at approximately 3m, and air temperature and relative humidity at approximate 2.5m. This climate station is operated by the Jornada LTER Program. This is an ONGOING dataset.more » « less
-
15-minute summary data at NPP G-IBPE met station. Average/maximum/minimum air temperature; average relative humidity and wind direction; average/maximum wind speed; atmospheric pressure; PAR; solar radiation. These are measured and calculated based on 1-second scan rate of all sensors located at an automated meteorological station installed at Jornada LTER NPP G-IBPE site. Wind speed is measured at 75 cm, 150 cm, and 300 cm, wind direction at approximately 3m, and air temperature and relative humidity at approximate 2.5m. This climate station is operated by the Jornada LTER Program. This is an ONGOING dataset.more » « less
-
null (Ed.)Abstract. Laboratory measurements of drop fall speeds by Gunn–Kinzer under still air conditions with pressure corrections of Beard are accepted as the “gold standard”. We present measured fall speeds of 2 and 3 mm raindrops falling in turbulent flow with 2D-video disdrometer (2DVD) and simultaneous measurements of wind velocity fluctuations using a 3D-sonic anemometer. The findings based on six rain events are, (i) the mean fall speed decreases (from the Gunn–Kinzer terminal velocity) with increasing turbulent intensity, and (ii) the standard deviation increases with increase in the rms of the air velocity fluctuations. These findings are compared with other observations reported in the literature.more » « less
-
Abstract. We report on fall speed measurements of raindrops in light-to-heavyrain events from two climatically different regimes (Greeley,Colorado, and Huntsville, Alabama) using the high-resolution(50 µm) Meteorological Particle Spectrometer (MPS) anda third-generation (170 µm resolution) 2-D videodisdrometer (2DVD). To mitigate wind effects, especially for thesmall drops, both instruments were installed within a 2∕3-scaleDouble Fence Intercomparison Reference (DFIR) enclosure. Two casesinvolved light-to-moderate wind speeds/gusts while the third casewas a tornadic supercell and several squall lines that passed overthe site with high wind speeds/gusts. As a proxy for turbulentintensity, maximum wind speeds from 10 m height at theinstrumented site recorded every 3 s were differenced withthe 5 min average wind speeds and then squared. The fall speedsvs. size from 0.1 to 2 and >0.7 mm were derived from theMPS and the 2DVD, respectively. Consistency of fall speeds from thetwo instruments in the overlap region (0.7–2 mm) gaveconfidence in the data quality and processing methodologies. Ourresults indicate that under low turbulence, the mean fall speedsagree well with fits to the terminal velocity measured in thelaboratory by Gunn and Kinzer from 100 µm up toprecipitation sizes. The histograms of fall speeds for 0.5, 0.7, 1and 1.5 mm sizes were examined in detail under the sameconditions. The histogram shapes for the 1 and 1.5 mm sizeswere symmetric and in good agreement between the two instrumentswith no evidence of skewness or of sub- or super-terminal fallspeeds. The histograms of the smaller 0.5 and 0.7 mm dropsfrom MPS, while generally symmetric, showed that occasionaloccurrences of sub- and super-terminal fall speeds could not beruled out. In the supercell case, the very strong gusts andinferred high turbulence intensity caused a significant broadeningof the fall speed distributions with negative skewness (for drops of1.3, 2 and 3 mm). The mean fall speeds were also found todecrease nearly linearly with increasing turbulent intensityattaining values about 25–30 % less than the terminalvelocity of Gunn–Kinzer, i.e., sub-terminal fall speeds.more » « less
An official website of the United States government
