skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Cultural transmission of animal tool use driven by trade-offs: insights from sponge-using dolphins
Although tool use offers obvious benefits to the user, the role of costs in the spread of tool use has received scant attention. Sponge tool use is a foraging technique restricted to a small subpopulation of bottlenose dolphins (Tursiops aduncus) in Shark Bay, Australia, that carry basket sponges on their beaks to probe the seafloor and flush out camouflaged fish, widening the search area and protecting the beak from abrasion. While most instances of animal tool use extend the phenotype, we hypothesized that sponges interfere with echolocation, particularly reception of echoes along the lower jaw. To evaluate how echolocation signals change while travelling through sponge tissue, we simulated echolocation using finite-element analysis based on digital models of sponge species (Echinodictyum mesenterinumandIrciniaspp.). We find that acoustic properties of the echolocation signal are changed in the presence ofIrciniaspp. and, to a lesser extent,E. mesenterinum. Given distortions vary with each sponge, dolphins must adaptively and flexibly compensate during neural signal processing. This explains why sponging takes so long to learn, is strictly vertically transmitted and does not spread to others despite close association with tool users. Taken together, these findings provide a compelling look at the underlying intrinsic and extrinsic forces shaping tool use in wild populations.  more » « less
Award ID(s):
2146995 2106909
PAR ID:
10630158
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Royal Society Publishing
Date Published:
Journal Name:
Royal Society Open Science
Volume:
12
Issue:
7
ISSN:
2054-5703
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a novel symbolic reasoning engine for SQL which can efficiently generate an inputIfornqueriesP1, ⋯,Pn, such that their outputs onIsatisfy a given property (expressed in SMT). This is useful in different contexts, such as disproving equivalence of two SQL queries and disambiguating a set of queries. Our first idea is to reason about an under-approximation of eachPi— that is, a subset ofPi’s input-output behaviors. While it makes our approach both semantics-aware and lightweight, this idea alone is incomplete (as a fixed under-approximation might miss some behaviors of interest). Therefore, our second idea is to perform search over an expressive family of under-approximations (which collectively cover all program behaviors of interest), thereby making our approach complete. We have implemented these ideas in a tool, Polygon, and evaluated it on over 30,000 benchmarks across two tasks (namely, SQL equivalence refutation and query disambiguation). Our evaluation results show that Polygon significantly outperforms all prior techniques. 
    more » « less
  2. Sponges (Porifera) contain many peptide-specialized metabolites with potent biological activities and significant roles in shaping marine ecology. It is well established that symbiotic bacteria produce bioactive “sponge” peptides, both on the ribosome (RiPPs) and nonribosomally. Here, we demonstrate that sponges themselves also produce many bioactive macrocyclic peptides, such as phakellistatins and related proline-rich macrocyclic peptides (PRMPs). Using theStylissa carterisponge transcriptome, methods were developed to find sequences encoding 46 distinct RiPP-type core peptides, of which ten encoded previously identified PRMP sequences. With this basis set, the genome and transcriptome of the spongeAxinella corrugatawas interrogated to find 35 PRMP precursor peptides encoding 31 unique core peptide sequences. At least 11 of these produced cyclic peptides that were present in the sponge and could be characterized by mass spectrometry, including stylissamides A-D and seven previously undescribed compounds. Precursor peptides were encoded in theA. corrugatagenome, confirming their animal origin. The peptides contained signal peptide sequences and highly repetitive recognition sequence-core peptide elements with up to 25 PRMP copies in a single precursor. In comparison to sponges without PRMPs, PRMP sponges are incredibly enriched in potentially secreted polypeptides, with >23,000 individual signal peptide encoding genes found in a single transcriptome. The similarities between PRMP biosynthetic genes and neuropeptides in terms of their biosynthetic logic suggest a fundamental biology linked to circular peptides, possibly indicating a widespread and underappreciated diversity of signaling peptide post-translational modifications across the animal kingdom. 
    more » « less
  3. The D1 subunit of photosystem II (PSII) is subject to light-induced damage. In plants, D1 photodamage activates translation of chloroplastpsbAmRNA encoding D1, providing D1 for PSII repair. Three D1 assembly factors have been implicated in the regulatory mechanism: HCF244 and RBD1 activatepsbAtranslation, whereas HCF136 repressespsbAtranslation in the dark. To clarify the regulatory circuit, we analyzedpsbAribosome occupancy in dark-adapted and illuminatedrbd1andrbd1;hcf136double mutants in Arabidopsis and in Zm-hcf244and Zm-hcf244;Zm-hcf136double mutants in maize. The results show that RBD1 is required for light-inducedpsbAtranslation but has only a small effect onpsbAribosome occupancy in the dark. RBD1 is not required forpsbAtranslation when HCF136 is absent, indicating that RBD1 activatespsbAtranslation in the light by inhibiting HCF136’s repressive effect. By contrast, HCF244 is required to recruit ribosomes topsbAmRNA in light, dark, and in the absence of HCF136. We demonstrate further that HCF244 is not required for the translational activator HCF173 to bind thepsbA5’UTR. These results show that RBD1 is central to the perception of the D1 photodamage that triggers D1 synthesis and that it activatespsbAtranslation by relieving repression by an HCF136-dependent assembly intermediate. HCF244 activates downstream of those events without impacting HCF173’s binding topsbAmRNA. The results implicate a feature of nascent D1 that is affected by both HCF136 and RBD1 as the signal that reports D1 photodamage to regulatepsbAtranslation rate as needed for PSII repair. 
    more » « less
  4. Goldman, Gustavo H (Ed.)
    ABSTRACT Infections caused by the emerging pathogenic yeastClavispora (Candida) lusitaniaecan be difficult to manage due to multi-drug resistance. Resistance to the frontline antifungal fluconazole (FLZ) inCandidaspp. is commonly acquired through gain-of-function (GOF) mutations in the gene encoding the transcription factor Mrr1. These activated Mrr1 variants enhance FLZ efflux via upregulation of the multi-drug transporter geneMDR1. Recently, it was reported that, unlike in the well-studiedCandida albicansspecies,C. lusitaniaeandCandida parapsilosiswith activated Mrr1 also have high expression ofCDR1, which encodes another multi-drug transporter with overlapping but distinct transported substrate profiles and Cdr1-dependent FLZ resistance. To better understand the mechanisms of Mrr1 regulation ofMDR1andCDR1, and other co-regulated genes, we performed Cleavage Under Targets and Release Using Nuclease (CUT&RUN) analysis of Mrr1 binding sites. Mrr1 bound the promoter regions ofMDR1andCDR1, as well asFLU1, which encodes another transporter capable of FLZ efflux. Mdr1 and Cdr1 independently contributed to the decreased susceptibility of theMRR1GOFstrains against diverse clinical azoles and other antifungals, including 5-flucytosine. A consensus motif, CGGAGWTAR, enriched in Mrr1-boundC. lusitaniaeDNA was also conserved upstream ofMDR1andCDR1across species, includingC. albicans. CUT&RUN and RNA-seq data were used to define the Mrr1 regulon, which includes genes involved in transport, stress response, and metabolism. Activated and inducible Mrr1 bound similar regions in the promoters of Mrr1 regulon genes. Our studies provide new evolutionary insights into the coordinated regulation of multi-drug transporters and potential mechanism(s) that aid secondary resistance acquisition in emergingCandida. IMPORTANCEUnderstanding antifungal resistance in emergingCandidapathogens is essential to managing treatment failures and guiding the development of new therapeutic strategies. Like otherCandidaspecies, the environmental opportunistic fungal pathogenClavispora(Candida)lusitaniaecan acquire resistance to the antifungal fluconazole by overexpression of the multi-drug efflux pump Mdr1 through gain-of-function (GOF) mutations in the gene encoding the transcription factor Mrr1. Here, we show thatC. lusitaniaeMrr1 also directly regulatesCDR1, another major multi-drug transporter gene, along withMDR1. In strains with activated Mrr1, upregulation ofMDR1andCDR1protects against diverse antifungals, potentially aiding the rise of other resistance mutations. Mrr1 also regulates several stress response and metabolism genes, thereby providing new perspectives into the physiology of drug-resistant strains. The identification of an Mrr1 binding motif that is conserved across strains and species will advance future efforts to understand multi-drug resistance acrossCandidaspecies. 
    more » « less
  5. Spear, John R (Ed.)
    ABSTRACT Microorganisms are important catalysts for the oxidation of reduced inorganic sulfur compounds. One environmentally important source of reduced sulfur is metal sulfide minerals that occur in economic mineral deposits and mine waste. Previous research found thatSulfuriferulaspp. were abundant and active in long-term weathering experiments with simulated waste rock and tailings from the Duluth Complex, Northern Minnesota. We, therefore, isolated several strains ofSulfuriferulaspp. from these long-term experiments and characterized their metabolic and genomic properties to provide insight into microbe-mineral interactions and the microbial biogeochemistry in these and other moderately acidic to circumneutral environments. TheSulfuriferulastrains are all obligate chemolithoautotrophs capable of oxidizing inorganic sulfur compounds and ferrous iron. The strains grew over different pH ranges, but all grew between pH 4.5 and 7, matching the weathering conditions of the Duluth Complex rocks. All strains grew on the iron-sulfide mineral pyrrhotite (Fe1 −xS, 0 <x< 0.125) as the sole energy source, as well as hydrogen sulfide and thiosulfate, which are products of sulfide mineral breakdown. Despite their metabolic similarities, each strain encodes a distinct pathway for the oxidation of reduced inorganic sulfur compounds as well as differences in nitrogen metabolism that reveal diverse genomic capabilities among the group. Our results show thatSulfuriferulaspp. are primary producers that likely play a role in sulfide mineral breakdown in moderately acidic to circumneutral mine waste, and the metabolic diversity within the genus may explain their success in sulfide mineral-rich and other sulfidic environments. IMPORTANCEMetal sulfide minerals, such as pyrite and pyrrhotite, are one of the main sources of reduced sulfur in the global sulfur cycle. The chemolithotrophic microorganisms that break down these minerals in natural and engineered settings are catalysts for biogeochemical sulfur cycling and have important applications in biotechnological processes such as biomining and bioremediation.Sulfuriferulais a recently described genus of sulfur-oxidizing bacteria that are abundant primary producers in diverse terrestrial environments, including waste rock and tailings from metal mining operations. In this study, we explored the genomic and metabolic properties of new isolates from this genus, and the implications for their ecophysiology and biotechnological potential in ore and waste from economic mineral deposits. 
    more » « less