skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 13, 2025

Title: Anarchic Federated Bilevel Optimization
Rapid federated bilevel optimization (FBO) developments have attracted much attention in various emerging machine learning and communication applications. Existing work on FBO often assumes that clients participate in the learning process with some particular pattern (such as balanced participation), and/or in a synchronous manner, and/or with homogeneous local iteration numbers, which might be hard to hold in practice. This paper proposes a novel Anarchic Federated Bilevel Optimization (AFBO) algorithm, which allows clients to 1) participate in any inner or outer rounds; 2) participate asynchronously; and 3) participate with any number of local iterations. The AFBO algorithm enables clients to participate in FBO training flexibly. We provide a theoretical analysis of the learning loss of AFBO for both cases of non-convex and strongly convex loss functions. The convergence results of the AFBO algorithm match that of the existing benchmarks. Numerical studies are conducted to verify the effectiveness of AFBO.  more » « less
Award ID(s):
2313191
PAR ID:
10630178
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
2024 22nd International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt'24)
Date Published:
Journal Name:
Proceedings of the International Symposium on Modeling and Optimization in Mobile Ad Hoc and Wireless Networks
ISSN:
2690-3334
ISBN:
979-8-3315-0872-2
Page Range / eLocation ID:
353-360
Format(s):
Medium: X
Location:
Seoul, Korea, Republic of
Sponsoring Org:
National Science Foundation
More Like this
  1. Federated bilevel optimization (FBO) has garnered significant attention lately, driven by its promising applications in meta-learning and hyperparameter optimization. Existing algorithms generally aim to approximate the gradient of the upper-level objective function (hypergradient) in the federated setting. However, because of the nonlinearity of the hypergradient and client drift, they often involve complicated computations. These computations, like multiple optimization sub-loops and second-order derivative evaluations, end up with significant memory consumption and high computational costs. In this paper, we propose a computationally and memory-efficient FBO algorithm named MemFBO. MemFBO features a fully single-loop structure with all involved variables updated simultaneously, and uses only first-order gradient information for all local updates. We show that MemFBO exhibits a linear convergence speedup with milder assumptions in both partial and full client participation scenarios. We further implement MemFBO in a novel FBO application for federated data cleaning. Our experiments, conducted on this application and federated hyper-representation, demonstrate the effectiveness of the proposed algorithm. 
    more » « less
  2. Federated bilevel optimization (FBO) has garnered significant attention lately, driven by its promising applications in meta-learning and hyperparameter optimization. Existing algorithms generally aim to approximate the gradient of the upper-level objective function (hypergradient) in the federated setting. However, because of the nonlinearity of the hypergradient and client drift, they often involve complicated computations. These computations, like multiple optimization sub-loops and second-order derivative evaluations, end up with significant memory consumption and high computational costs. In this paper, we propose a computationally and memory-efficient FBO algorithm named MemFBO. MemFBO features a fully single-loop structure with all involved variables updated simultaneously, and uses only first-order gradient information for all local updates. We show that MemFBO exhibits a linear convergence speedup with milder assumptions in both partial and full client participation scenarios. We further implement MemFBO in a novel FBO application for federated data cleaning. Our experiments, conducted on this application and federated hyper-representation, demonstrate the effectiveness of the proposed algorithm. 
    more » « less
  3. Federated bilevel optimization (FBO) has shown great potential recently in machine learning and edge computing due to the emerging nested optimization structure in meta-learning, fine-tuning, hyperparameter tuning, etc. However, existing FBO algorithms often involve complicated computations and require multiple sub-loops per iteration, each of which contains a number of communication rounds. In this paper, we propose a simple and flexible FBO framework named SimFBO, which is easy to implement without sub-loops, and includes a generalized server-side aggregation and update for improving communication efficiency. We further propose System-level heterogeneity robust FBO (ShroFBO) as a variant of SimFBO with stronger resilience to heterogeneous local computation. We show that SimFBO and ShroFBO provably achieve a linear convergence speedup with partial client participation and client sampling without replacement, as well as improved sample and communication complexities. Experiments demonstrate the effectiveness of the proposed methods over existing FBO algorithms. 
    more » « less
  4. Federated bilevel optimization (FBO) has shown great potential recently in machine learning and edge computing due to the emerging nested optimization structure in meta-learning, fine-tuning, hyperparameter tuning, etc. However, existing FBO algorithms often involve complicated computations and require multiple sub-loops per iteration, each of which contains a number of communication rounds. In this paper, we propose a simple and flexible FBO framework named SimFBO, which is easy to implement without sub-loops, and includes a generalized server-side aggregation and update for improving communication efficiency. We further propose System-level heterogeneity robust FBO (ShroFBO) as a variant of SimFBO with stronger resilience to heterogeneous local computation. We show that SimFBO and ShroFBO provably achieve a linear convergence speedup with partial client participation and client sampling without replacement, as well as improved sample and communication complexities. Experiments demonstrate the effectiveness of the proposed methods over existing FBO algorithms. 
    more » « less
  5. Federated bilevel learning has received increasing attention in various emerging machine learning and communication applications. Recently, several Hessian-vector-based algorithms have been proposed to solve the federated bilevel optimization problem. However, several important properties in federated learning such as the partial client participation and the linear speedup for convergence (i.e., the convergence rate and complexity are improved linearly with respect to the number of sampled clients) in the presence of non-i.i.d.~datasets, still remain open. In this paper, we fill these gaps by proposing a new federated bilevel algorithm named FedMBO with a novel client sampling scheme in the federated hypergradient estimation. We show that FedMBO achieves a convergence rate of $$\mathcal{O}\big(\frac{1}{\sqrt{nK}}+\frac{1}{K}+\frac{\sqrt{n}}{K^{3/2}}\big)$$ on non-i.i.d.~datasets, where $$n$$ is the number of participating clients in each round, and $$K$$ is the total number of iteration. This is the first theoretical linear speedup result for non-i.i.d.~federated bilevel optimization. Extensive experiments validate our theoretical results and demonstrate the effectiveness of our proposed method. 
    more » « less